

NOTICE OF PROPOSED DEVELOPMENT

Notice is hereby given that an application has been made for planning approval for the following development:

SITE:

35 ELISE DRIVE, DODGES FERRY

**PROPOSED DEVELOPMENT:
DWELLING & OUTBUILDING**

The relevant plans and documents can be inspected at the Council Offices at 47 Cole Street, Sorell during normal office hours, or the plans may be viewed on Council's website at www.sorell.tas.gov.au until **Monday 2nd March 2026**.

Any person may make representation in relation to the proposal by letter or electronic mail (sorell.council@sorell.tas.gov.au) addressed to the General Manager. Representations must be received no later than **Monday 2nd March 2026**

**APPLICATION NO: 5.2026-15.1
DATE: 13 FEBRUARY 2026**

Disclaimer

Any information extracted from this document (from the face of the document or by scale) should be verified on site. Council takes no responsibility for the accuracy of any information contained or presented in the document. While every care has been taken to ensure the accuracy of this information, Council makes no representations or warranties about the accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and liability.

20 m

Part B: Please note that Part B of this form is publicly exhibited.

Full description of Proposal:	<i>Use:</i>
	<i>Development:</i>
	<i>Large or complex proposals should be described in a letter or planning report.</i>
Design and construction cost of proposal:	\$

Is all, or some the work already constructed:	No: <input type="checkbox"/> Yes: <input type="checkbox"/>
---	--

Location of proposed works:	Street address:
	Suburb: Postcode:
	Certificate of Title(s) Volume: Folio:

Current Use of Site
---------------------	-------

Current Owner/s:	Name(s).....
------------------	--------------

Is the Property on the Tasmanian Heritage Register?	No: <input type="checkbox"/> Yes: <input type="checkbox"/>	<i>If yes, please provide written advice from Heritage Tasmania</i>
Is the proposal to be carried out in more than one stage?	No: <input type="checkbox"/> Yes: <input type="checkbox"/>	<i>If yes, please clearly describe in plans</i>
Have any potentially contaminating uses been undertaken on the site?	No: <input type="checkbox"/> Yes: <input type="checkbox"/>	<i>If yes, please complete the Additional Information for Non-Residential Use</i>
Is any vegetation proposed to be removed?	No: <input type="checkbox"/> Yes: <input type="checkbox"/>	<i>If yes, please ensure plans clearly show area to be impacted</i>
Does the proposal involve land administered or owned by either the Crown or Council?	No: <input type="checkbox"/> Yes: <input type="checkbox"/>	<i>If yes, please complete the Council or Crown land section on page 3</i>

If a new or upgraded vehicular crossing is required from Council to the front boundary please complete the Vehicular Crossing (and Associated Works) application form

<https://www.sorell.tas.gov.au/services/engineering/>

Sorell Council

Development Application: Development Application - 35 Elise Drive, Dodges Ferry.pdf

Plans Reference:P1
Date Received:29/01/2026

Declarations and acknowledgements

- I/we confirm that the application does not contradict any easement, covenant or restriction specified in the Certificate of Title, Schedule of Easements or Part 5 Agreement for the land.
- I/we consent to Council employees or consultants entering the site and have arranged permission and/or access for Council's representatives to enter the land at any time during normal business hours.
- I/we authorise the provision of a copy of any documents relating to this application to any person for the purposes of assessment or public consultation and have permission of the copyright owner for such copies.
- I/we declare that, in accordance with s52(1) of the *Land Use Planning and Approvals Act 1993*, that I have notified the owner(s) of the intention to make this application.
- I/we declare that the information in this application is true and correct.

Details of how the Council manages personal information and how you can request access or corrections to it is outlined in Council's Privacy Policy available on the Council website.

- I/we acknowledge that the documentation submitted in support of my application will become a public record held by Council and may be reproduced by Council in both electronic and hard copy format in order to facilitate the assessment process, for display purposes during public exhibition, and to fulfil its statutory obligations. I further acknowledge that following determination of my application, Council will store documentation relating to my application in electronic format only.
- Where the General Manager's consent is also required under s.14 of the *Urban Drainage Act 2013*, by making this application I/we also apply for that consent.

Applicant Signature:

Signature: Date:

Crown or General Manager Land Owner Consent

If the land that is the subject of this application is owned or administered by either the Crown or Sorell Council, the consent of the relevant Minister or the Council General Manager whichever is applicable, must be included here. This consent should be completed and signed by either the General Manager, the Minister, or a delegate (as specified in s52 (1D-1G) of the *Land Use Planning and Approvals Act 1993*).

Please note:

- If General Manager consent if required, please first complete the General Manager consent application form available on our website www.sorell.tas.gov.au
- If the application involves Crown land you will also need a letter of consent.
- Any consent is for the purposes of making this application only and is not consent to undertaken work or take any other action with respect to the proposed use or development.

I _____ being responsible for the

administration of land at _____

declare that I have given permission for the making of this application for

Signature of General Manager,
Minister or Delegate:

Signature: Date:

SEARCH OF TORRENS TITLE

VOLUME	FOLIO
182759	5
EDITION	DATE OF ISSUE
3	14-Apr-2023

SEARCH DATE : 04-Oct-2023

SEARCH TIME : 06.08 PM

DESCRIPTION OF LAND

Parish of FORCETT Land District of PEMBROKE

Lot 5 on Sealed Plan 182759

Derivation : Part of 547 Acres Gtd. to Thomas Macdowell

Prior CTs 158772/4 and 158772/5

SCHEDULE 1N125357 TRANSFER to ANDREW NEIL STORY and JESSICA ANNE STORY
Registered 14-Apr-2023 at 12.01 PM**SCHEDULE 2**

Reservations and conditions in the Crown Grant if any

SP182759 EASEMENTS in Schedule of Easements

SP182759 COVENANTS in Schedule of Easements

SP182759 FENCING PROVISION in Schedule of Easements

SP158772 COVENANTS in Schedule of Easements

SP158772 FENCING PROVISION in Schedule of Easements

SP 5561 COUNCIL NOTIFICATION under Section 468(12) of the
Local Government Act 1962E341711 MORTGAGE to Australia and New Zealand Banking Group
Limited Registered 14-Apr-2023 at 12.02 PM**UNREGISTERED DEALINGS AND NOTATIONS**

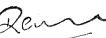
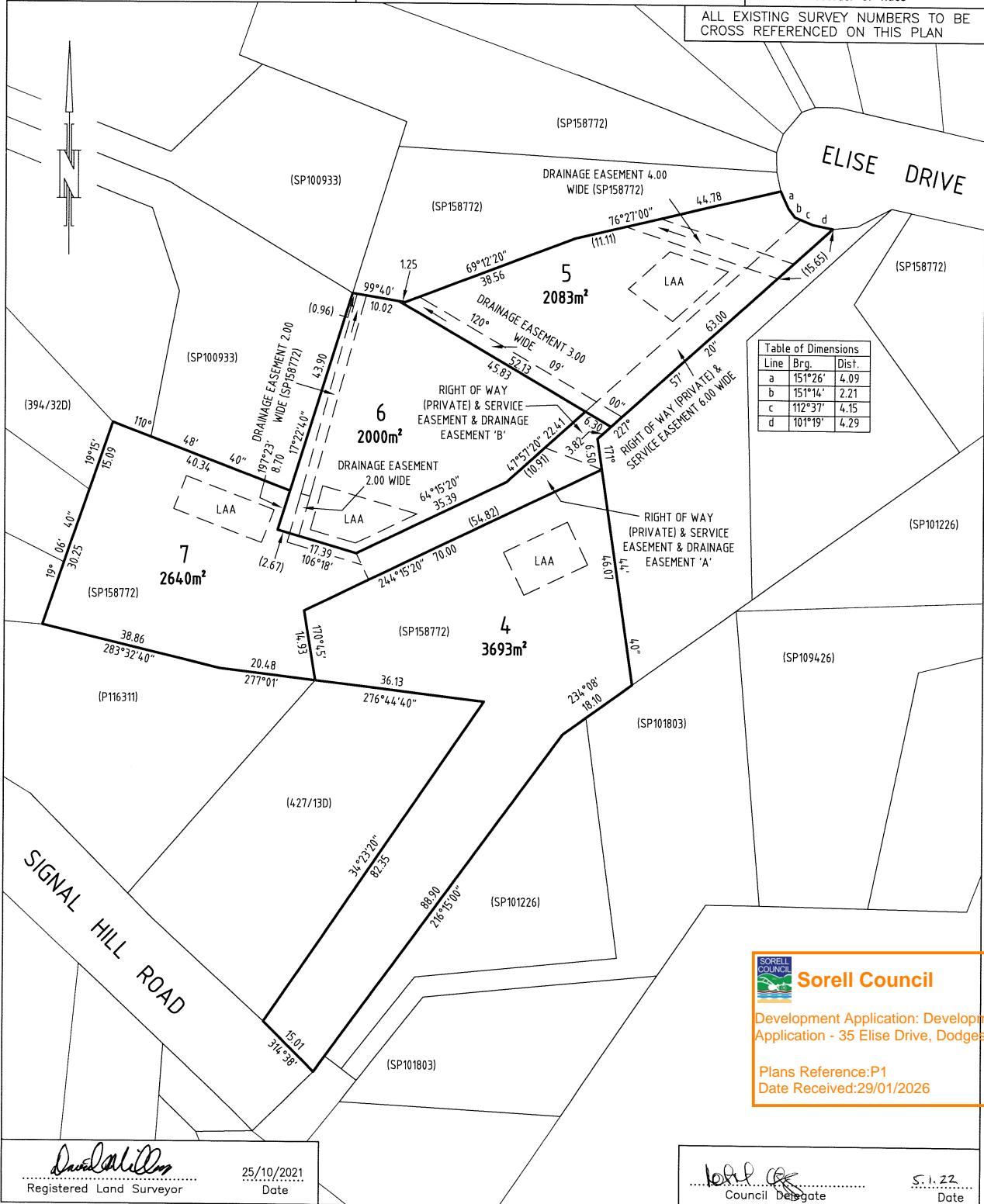
No unregistered dealings or other notations

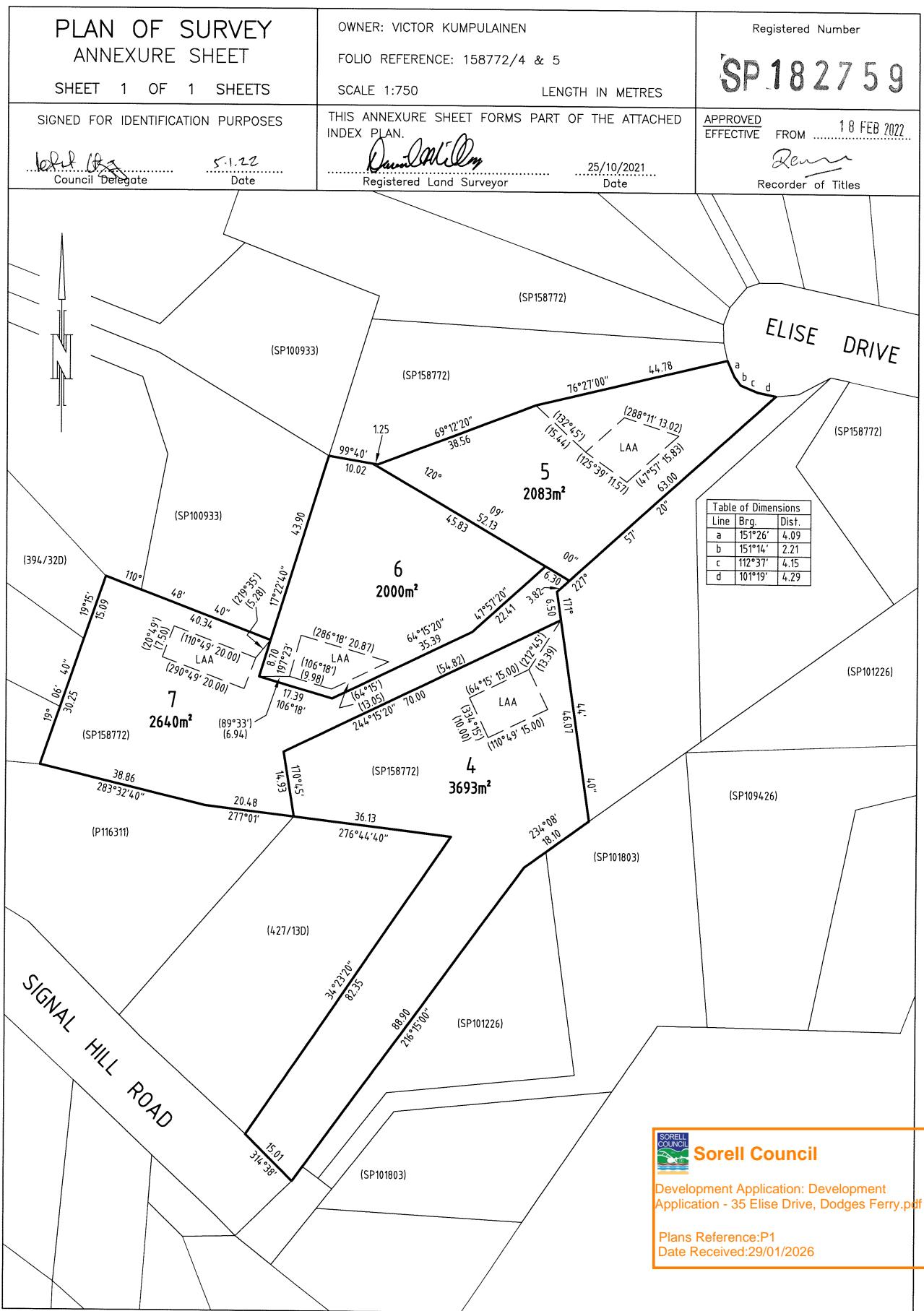
Sorell Council

Development Application: Development Application - 35 Elise Drive, Dodges Ferry.pdf

Plans Reference:P1
Date Received:29/01/2026

OWNER VICTOR KUMPULAINEN
FOLIO REFERENCE 158772/4 & 5
GRANTEE PART OF 547 ACRES GTD. TO
THOMAS MACDOWELL.



PLAN OF SURVEY


BY SURVEYOR DAVID BRUCE MILLER
ROGERSON AND BIRCH SURVEYORS
UNIT 1 - 2 KENNEDY DRIVE, CAMBRIDGE PARK
PH 6248-5898 MOB. 0400-114-824

**LAND DISTRICT OF PEMBROKE
PARISH OF FORCETT**

SCALE 1:750 LENGTHS IN METRES

Registered Number

SP182759APPROVED
EFFECTIVE FROM 18 FEB 2022

Recorder of Titles
ALL EXISTING SURVEY NUMBERS TO BE
CROSS REFERENCED ON THIS PLAN

Sorell Council

Development Application: Development Application - 35 Elise Drive, Dodges Ferry.pdf

Plans Reference:P1
Date Received:29/01/2026

DOYLE **SOIL** **CONSULTING**

SITE AND SOIL EVALUATION REPORT ONSITE WASTEWATER ASSESSMENT

Sorell Council

Development Application: Development
Application - 35 Elise Drive, Dodges Ferry.pdf

Plans Reference:P1
Date Received:29/01/2026

35 Elise Drive

Dodges Ferry

May 2023

Amended August 2023

SITE INFORMATION

Client: Andy Story

Address: 35 Elise Drive, Dodges Ferry (CT 182759/5)

Site Area: Approximately 2096 m²

Date of inspection: 28/04/2023

Building type: New house

Services: Tank water and Onsite wastewater

Planning Overlays: Southern Beaches onsite wastewater and stormwater management, waterway and coastal protection overlay, airport obstacle limitation area, flood prone hazard areas

Mapped Geology - Mineral Resources Tasmania 1:250 000 Southeast Tasmania sheet:

Qh = Quaternary sand, gravel, and mud

Soil Depth: 1.25 – 3.2 m

Subsoil Drainage: Moderately-well drained

Drainage lines / water courses: Minor tributary running through centre of block

Vegetation: mixed grass and scattered trees

Rainfall in previous 7 days: None

Slope: Approximately 4° to the west northwest

SITE ASSESSMENT AND SAMPLE TESTING

Site and soil assessment in accordance with AS1547-2012 *Onsite domestic wastewater assessment and design*.

Emerson Dispersion test on subsoils.

Test holes were dug using a Christie Post Driver Soil Sampling Kit, comprising CHPD78 Christie Post Driver with Soil Sampling Tube (50 mm OD x 1600/2100 mm).

SITE AND SOIL COMMENTS

The test holes indicate the site to be covered with mixed uncontrolled fill ranging from approximately 0.8 to 1.7 m depth. Historical satellite imagery shows the site to have undergone significant earthworks including the backfilling of a dam. In the proposed Land Application Area (LAA) the fill comprises sand and gravel with minor lumps of clay.

SOIL PROFILES – Test Hole 3

Depth (m)	Horizon	Description and field texture grade	Soil Category
0.0 – 0.5	FILL	Mixed uncontrolled fill comprising Sand , sandstone Gravels and a few lumps of Light Clay .	2
0.5 – 1.0	FILL	Mixed uncontrolled Sand fill with few sandstone Gravels , dry loose consistency.	1
1.0 – 1.4	FILL	Mixed sandstone Gravels/rocks and black Sand , uncontrolled fill.	1
1.4 – 1.7+	FILL	Mixed Sand and Light Clay , uncontrolled fill, no refusal.	5

EMERSON AGGREGATE DISPERSION TEST

Soils with an excess of exchangeable sodium ions on the cation exchange complex (clays), can cause clay dispersion. Under some circumstances the presence of dispersive soils can also lead to significant erosion, and in particular tunnels leading to eventual gully erosion. Dispersive clay subsoil materials can also cause sealing of the soil surface – if left out in wet weather, they then dry and set very hard in dry weather. Based upon field survey of the property and the surrounding area, no erosion was identified at the site.

The subsoil was tested for dispersion using the Emerson Aggregate Test (EAT). Photo(s) are available on request. Testing resulted in Emerson class 2(1), indicating clays with dispersion characteristics. Exposure to rainfall may, therefore, lead to spontaneous clay dispersion.

To minimise the likelihood of this, we recommend coverage of exposed subsoil with topsoil or regular treatment with gypsum at 0.5 Kg/m² along with minimising subsoil disturbance whenever possible.

TH #	Depth (m)	Visual sign	Class
1	1.6 - 1.8	Some dispersion (Slight milkiness immediately adjacent to aggregate)	2(1)

WASTEWATER LAND APPLICATION AREA SETBACKS

Required setback from foundations: 6 m

Required setback from downslope surface water: 100 m

Required setback from downslope boundary: 5.5 m

Required setback from upslope and side boundaries: 1.5 m

Required vertical setback to bedrock: 0.5 m below the LAA (Table R1 of AS1547-2012)

Required vertical setback to groundwater: 0.6 m below the LAA (Table R1 of AS1547-2012)

WASTEWATER CLASSIFICATION AND DESIGN

According to AS1547-2012, the soil is **category 2** (Sandy Loam).

Secondary treatment recommended.

Wastewater loading: 7 persons @ 120 L/day (tank) - 840 L/day.

Design Loading Rate: 40 mm/day.

Total minimum Land Application Area required: 21 m² absorption area.

The proposed five-bedroom house has a calculated maximum daily loading of 840 L/day (Up to 7 persons @ 120 L/person/day). Using a Design Loading Rate of 40 mm/day, a minimum land application area of 21 m² is required.

The proposal is to gravity feed from the dwelling into a new packaged treatment system e.g. Econocycle. The effluent is to then be pumped to a modified bed. This may be installed as a raised absorption bed 7.5 m x 3.0 m x 0.6 m, dug into the natural ground no more than 200 mm. The bed should be filled with clean sand to 400 mm then 20-40 mm aggregate to 400 mm. Good quality sandy loam topsoil (non-dilatant) should then be mounded to at least 0.2 m depth over the natural surface. The bed may be battered with loamy topsoil and it is recommended that deep rooted grass species be planted to aid in evapotranspiration.

The minimum irrigation pumping capacity of should be equivalent to 120 kpa (i.e. 12m of head) at the furthest point of the irrigation area (a gauge should be placed at the vacuum breaker) – therefore pump size can be matched on site to the irrigation pipe size and design.

A diversion drain is to be installed upslope of the wastewater absorption area to divert any runoff water. A 100% reserve area should be set aside for future wastewater requirements.

To comply with the Southern Beaches On-site Waste Water Management Specific Area Plan

SOR-S2.6.1 Uses within the Southern Beaches On-site Wastewater Management Specific Area Plan

Acceptable Solutions:	Comment:
A1 No change, expansion, or intensification of residential or business use on the site.	Non-compliance therefore P1 must be addressed

Performance Criteria	Comment:
P1 The change, expansion, or intensification of a residential or business use on the site does not cause any adverse environmental impact or impact on public health, having regard to: (a) the extent and nature of the land available on the property to accommodate an on-site wastewater management system (including the land application area) for the proposed development; and (b) the land application area is setback a sufficient distance from watercourses, property boundaries and groundwater.	Complies with the use of secondary treatment via an AWTS into a bed. Complies – the setbacks are consistent with the Directors Guidelines 2016

SOR – S2.7 Development Standards for Buildings and Works

SOR-S2.7.1 On-site wastewater

Acceptable Solutions	Comment:
<p>A1</p> <p>Development must:</p> <ul style="list-style-type: none">(a) not cover more than 20% of the site.(b) not be located on land shown on an overlay map, as within:<ul style="list-style-type: none">(i) a flood-prone hazard area.(ii) a landslip hazard area.(iii) a coastal erosion hazard area.(iv) a waterway and coastal protection area; or(v) a coastal inundation hazard area.(c) be located on a site with a soil depth of at least 1.5m.(d) be located on a site where the average gradient of the land does not exceed 10%; and <p>in the case of a dwelling, provide 65m² of land for wastewater land application area per bedroom which is located at least 1.5m from an upslope or side slope boundary and 5m from a downslope boundary.</p>	<p>Complies</p> <p>Non-compliance due to flood-prone hazard overlay therefore P2 must be addressed.</p> <p>Complies</p> <p>Complies</p> <p>Non-compliance therefore P2 must be addressed</p> <p>Complies</p> <p>Complies</p> <p>Complies.</p> <p>Non-compliance therefore P2 must be addressed.</p>

Performance Criteria	Comment:
<p>P1</p> <p>The site must provide sufficient area for management of on-site wastewater, having regard to:</p> <p>(a) the topography of the site.</p> <p>(b) the capacity of the site to absorb wastewater.</p> <p>(c) the size and shape of the site.</p> <p>(d) the existing buildings and any constraints imposed by existing development.</p> <p>(e) the area of the site to be covered by the proposed development.</p> <p>(f) the provision for landscaping, vehicle parking, driveways, and private open space.</p> <p>(g) any adverse impacts on the quality of ground, surface, and coastal waters.</p> <p>(h) any adverse environmental impact on surrounding properties and the locality; and</p> <p>any written advice from a suitably qualified person (onsite wastewater management) about the adequacy of the on-site wastewater management system.</p>	<p>Complies</p> <p>Complies -the site is deep sands and has good permeability. Due to the flood prone overlay, a deep ag drain is recommended upslope of the LAA (preferably on the top side of the fence (neighbouring property) and the bed is to be raised and mounded a minimum of 200 mm above the natural soil surface.</p> <p>Complies</p> <p>Complies</p> <p>Complies</p> <p>complies</p> <p>Complies -the effluent will be treated to a secondary standard.</p> <p>Complies</p>

Acceptable Solutions	Comment:
A2 An outbuilding, driveway or parking area or addition or alteration to a building must not encroach onto an existing land application area.	Complies

Performance Criteria	Comment:
P2 An outbuilding, driveway or parking area or addition or alteration to a building must demonstrate that there is sufficient suitable area of land available for a new on- site wastewater management system.	N/A

Based on the upper 0.6 m of soil, all plumbing fixtures and fittings should be installed using **Class S** as per *Appendix G AS/NZS 3500.2.2021*.

Compliance with *Directors Guidelines 2016* is shown in the attached table for acceptable criteria. It is recommended that during construction Doyle Soil Consulting be notified of any major variation to the soil conditions or loading rate as predicted in this report.

Robyn Doyle
B.Agr.Sc.
Soil Scientist and
Wastewater Designer
Licence no. CC7149

APPENDIX 1 – TRENCH™

Doyle Soil Consulting Land suitability and system sizing for on-site wastewater management Trench 3.0 (Australian Institute of Environmental Health)

Assessment Report

Assessment for	Andy Story	Assess. Date	31-May-23
		Ref. No.	
Assessed site(s)	35 Elise Drive Dodges Ferry	Site(s) inspected	28-Apr-23
Local authority	Sorell Council	Assessed by	R Doyle

This report summarises wastewater volumes, climatic inputs for the site, soil characteristics and system sizing and design issues. Site Capability and Environmental sensitivity issues are reported separately, where 'Alert' columns flag factors with high (A) or very high (AA) limitations which probably require special consideration for system design(s). Blank spaces on this page indicate data have not been entered into TRENCH.

Wastewater Characteristics

Wastewater volume (L/day) used for this assessment = 840 (using the 'No. of bedrooms in a dwelling' method)

Septic tank wastewater volume (L/day) = 280

Sullage volume (L/day) = 560

Total nitrogen (kg/year) generated by wastewater = 6.1

Total phosphorus (kg/year) generated by wastewater = 1.5

Climatic assumptions for site

(Evapotranspiration calculated using the crop factor method)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean rainfall (mm)	39	32	45	35	42	53	33	49	46	44	43	43
Adopted rainfall (R, mm)	39	32	45	35	42	53	33	49	46	44	43	43
Retained rain (Rr, mm)	35	29	41	31	38	48	30	44	42	39	39	39
Max. daily temp. (deg. C)												
Evapotrans (ET, mm)	137	120	91	61	41	27	30	43	63	91	103	130
Evapotr. less rain (mm)	102	91	50	30	3	-21	0	-1	21	52	64	92
Annual evapotranspiration less retained rain (mm) =												484

Soil characteristics

Texture = Sandy Loam Category = 2 Thick. (m) = 1.7

Adopted permeability (m/day) = 2 Adopted LTAR (L/sq m/day) = 40 Min depth (m) to water = 3

Proposed disposal and treatment methods

Proportion of wastewater to be retained on site: All wastewater will be disposed of on the site

The preferred method of on-site primary treatment: In dual purpose septic tank(s)

The preferred method of on-site secondary treatment: In-ground

The preferred type of in-ground secondary treatment: Evapotranspiration bed(s)

The preferred type of above-ground secondary treatment: Trickle irrigation

Site modifications or specific designs: Are needed

Suggested dimensions for on-site secondary treatment system

Total length (m) = 6

Width (m) = 3

Depth (m) = 0.6

Total disposal area (sq m) required = 21

comprising a Primary Area (sq m) of: 21

and a Secondary (backup) Area (sq m) of:

Sufficient area is available on site

To enter comments, click on the line below 'Comments'. (This yellow-shaded box and the buttons on this page will not be printed.)

Comments

The calculated DLR for the category 2 soil is 40 mm/day and an absorption area of 21 sq m is required. Therefore the system should have the capacity to cope with predicted climatic and loading events.

Doyle Soil Consulting
Land suitability and system sizing for on-site wastewater management
 Trench 3.0 (Australian Institute of Environmental Health)

Site Capability Report

Assessment for Andy Story	Assess. Date	31-May-23
	Ref. No.	
Assessed site(s) 35 Elise Drive Dodges Ferry	Site(s) inspected	28-Apr-23
Local authority Sorell Council	Assessed by	R Doyle

This report summarises data relating to the physical capability of the assessed site(s) to accept wastewater. Environmental sensitivity and system design issues are reported separately. The 'Alert' column flags factors with high (A) or very high (AA) site limitations which probably require special consideration in site acceptability or for system design(s). Blank spaces indicate data have not been entered into TRENCH.

Alert	Factor	Units	Value	Confid level	Limitation		Remarks
					Trench	Amended	
	Expected design area	sq m	1,000		Moderate		
A	Density of disposal systems	/sq km	30		High		
	Slope angle	degrees	4		Very low		
	Slope form	Straight simple			Low		
	Surface drainage	Good			Very low		
	Flood potential	Site floods 1 in 50-75 yrs			Moderate		
	Heavy rain events	Rare			Low		
	Aspect (Southern hemi.)	Faces NE or NW			Low		
	Frequency of strong winds	Common			Low		
	Wastewater volume	L/day	840		Moderate		
	SAR of septic tank effluent		1.0		Low		
	SAR of sullage		2.5		Moderate		
	Soil thickness	m	1.7		Very low		
	Depth to bedrock	m	3.0		Very low		
	Surface rock outcrop	%	0		Very low		
	Cobbles in soil	%	0		Very low		
	Soil pH		6.0		Low		
	Soil bulk density	gm/cub. cm	1.4		Very low		
	Soil dispersion	Emerson No.	8		Very low		
A	Adopted permeability	m/day	2		High		
AA	Long Term Accept. Rate	L/day/sq m	40		Very high		

To enter comments, click on the line below 'Comments'. (This yellow-shaded box and the buttons on this page will not be printed.)

Comments

The site is suitable for onsite wastewater disposal with a large area set aside for the LAA. The site is limited by an inland flood overlay and therefore secondary treatment into a raised bed is recommended.

Doyle Soil Consulting
Land suitability and system sizing for on-site wastewater management
 Trench 3.0 (Australian Institute of Environmental Health)

Environmental Sensitivity Report

Assessment for Andy Story

Assess. Date

31-May-23

Ref. No.

Assessed site(s) 35 Elise Drive Dodges Ferry

Site(s) inspected

28-Apr-23

Local authority Sorell Council

Assessed by

R Doyle

This report summarises data relating to the environmental sensitivity of the assessed site(s) in relation to applied wastewater. Physical capability and system design issues are reported separately. The 'Alert' column flags factors with high (A) or very high (AA) limitations which probably require special consideration in site acceptability or for system design(s). Blank spaces indicate data have not been entered into TRENCH.

Alert	Factor	Units	Value	Confid level	Limitation		Remarks
					Trench	Amended	
AA	Cation exchange capacity	mmol/100g	15		Very high		
A	Phos. adsorp. capacity	kg/cub m	0.2		High		
	Annual rainfall excess	mm	-484		Very low		
	Min. depth to water table	m	3		Very low		
	Annual nutrient load	kg	7.7		Low		
	G'water environ. value	Agric non-sensit			Low		
	Min. separation dist. required	m	10		Low		
	Risk to adjacent bores						Factor not assessed
	Surf. water env. value	Agric non-sensit			Low		
A	Dist. to nearest surface water	m	100		High		
A	Dist. to nearest other feature	m	15		High		
	Risk of slope instability		Very low		Very low		
	Distance to landslip	m	1000		Very low		

To enter comments, click on the line below 'Comments'. (This yellow-shaded box and the buttons on this page will not be printed.)

Comments

There will be a low environmental risk due to secondary treatment and the distance to the downslope boundary means a very low risk of off-site movement.

Certification of an Onsite Waste Water Management System

To: Sorell Council

I Robyn Doyle

(Please print your name)

Of Doyle Soil Consulting

(Please print the Company's name, if applicable)

declare that, as the responsible designer for the onsite waste water management system at:

35 Elise Drive

(Site address details)

Dodges Ferry

I have ensured that sufficient inspections of the installation of the on-site waste water management system have been conducted at this address to be satisfied that:

1. The system appears to conform with the design, and;
2. That the system, as installed, appears to conform with AS/NZS 1547:2012

Were water reduction fixtures included as part of the design?

No

Yes

If yes, please sign the following statement:

The water reduction fixtures specified in the design have been inspected and I am satisfied that they have been satisfactorily installed:

Signed: _____

Section to be completed for AWTS Inspections

Where the design and approval was for an aerated wastewater system (AWTS) a copy of the scale "as installed" irrigation plan is attached showing the measurement, in square metres, of each irrigation area and the location of each irrigation area with respect to the property boundaries and any buildings on the property and the following is to be completed.

Type of AWTS installed: Econocycle

I have inspected and measured the irrigation area. I certify that there is a total of 22.5 m² of sub-surface irrigation area and there is an adequate irrigation system to distribute the wastewater evenly over the area and sufficient plants are provided to aid in the transpiration of the waste water.

Signed: _____

Dated: _____ 18/12/2023 _____

Sorell Council

Development Application: Development Application - 35 Elise Drive, Dodges Ferry.pdf

Plans Reference:P1
Date Received:29/01/2026

DOYLE SOIL CONSULTING

Wastewater system:

AWTS

Raised absorption bed 7.5 m x 3 m x 0.6 m.

To be dug into the ground no more than 400 mm.

400mm deep diversion drain

Min 6 m separation from foundations

Min 1.5 m separation from side boundary

Min 6.5 m separation from downslope boundary

Approximate Testhole locations

Refer to DSC report

APPROVED

18/12/2023

Robyn Doyle
Building Services Designer
Hydraulic
CC7418

22/8/2023

Geotechnical & Environmental Services

Sorell Council

Development Application: Development Application - 35 Elise Drive, Dodges Ferry.pdf

Plans Reference:P1
Date Received:29/01/2026

FLOOD PRONE AREAS HAZARD ASSESSMENT

Proposed Dwelling & Shed

35 ELISE DRIVE - DODGES FERRY

Client: Andrew Story
Certificate of Title: 182759/5
Investigation Date: 14/11/2025

Refer to this Report As

Enviro-Tech Consultants Pty. Ltd. 2025. Flood Prone Areas Assessment Report for a Proposed Dwelling and shed, 35 Elise Drive - Dodges Ferry. Unpublished report for Andrew Story by Enviro-Tech Consultants Pty. Ltd., 14/11/2025.

Report Distribution:

This report has been prepared by Enviro-Tech Consultants Pty. Ltd. for the use by parties involved in the proposed residential development of the property named above. It is to be used only to assist in managing any existing or potential inundation hazards relating to the Site and its development.

Permission is hereby given by Enviro-Tech Consultants Pty. Ltd., and the client, for this report to be copied and distributed to interested parties, but only if it is reproduced in colour, and only distributed in full. No responsibility is otherwise taken for the contents.

Limitations of this report

The data displayed within this document has been prepared using open-source scientific documents and data. Envirotech have used this local and regional data to estimate present and future hazards at the Site. The data is by its nature approximate and may contain errors introduced by the data provider(s).

The inundation modelling conducted in this assessment assumes specific Site conditions detailed within this assessment report as per design plans. Modifications to the landscape, not indicated in this report, including construction of retaining walls, soil cut or fill, and water flow obstructions including but not limited to vegetation, fencing, and non-fixed items may result in varied inundation levels and varied water flow movement across the property which are not modelled in this assessment are outside of the scope of this investigation.

Executive Summary

Enviro-Tech Consultants Pty. Ltd. (Envirotech) was engaged to prepare a flood-prone areas hazard assessment for a proposed dwelling with attached garage and a shed at 35 Elise Drive, Dodges Ferry. The Site is partially affected by the Sorell Council mapped 1% Annual Exceedance Probability (AEP) flood-prone area, triggering the Flood-Prone Areas Hazard Code.

A hydrological and cross-sectional assessment was undertaken to evaluate existing and post-development flood behaviour. The Site receives shallow overland flow from a broader upstream catchment, with inflows originating primarily from the east and south and naturally discharging toward the north-western boundary of the property.

Existing drainage infrastructure at the end of the access driveway intercepts these inflows and directs stormwater into a grated pit connected to a 300 mm diameter stormwater pipe located within the 3.0 m wide drainage easement. This pipe conveys the full 1% AEP flows to a downstream collection pit located within neighbouring council-maintained land to the north.

Post-development modelling demonstrates that the existing access road will continue to convey shallow sheet flow under 1% AEP conditions, with low depths and velocities consistent with Hazard Category H1, generally safe for people, vehicles, and buildings. Floodwaters are fully managed within the established drainage network, and the natural north-western discharge point is maintained.

The modelling confirms that the proposed development:

- does not increase flood risk on-site or off-site;
- maintains existing drainage behaviour;
- keeps all habitable floor levels greater than 300mm above the mapped 1% AEP extent; and
- achieves a tolerable level of flood risk without requiring structural flood-protection measures.

Based on this assessment the development satisfies the Performance Criteria of the Flood-Prone Areas Hazard Code and maintains safe, compliant flood behaviour for the life of the proposed use.

1 Introduction

1.1 Background

Enviro-Tech Consultants Pty. Ltd. (Envirotech) were contracted by Andrew Story on behalf of Michael Kelly to prepare a flood prone areas hazard assessment for a proposed dwelling and shed located at 35 Elise Drive, Dodges Ferry. This report has been written to address planning scheme overlay codes in general accordance with the state-wide planning provisions for Sorell City Council.

This inundation modelling report has been overseen by an environmental and engineering geologist with hydrogeology and hydrology training and experience. Areas of competence include catchment and streamflow models for assessing waterway erosion and inundation.

The proposed development has triggered the following overlay codes which are addressed within this report:

- C 12.0 Flood Prone Areas Code

1.2 Objectives

The objective of the Site investigation is to:

- Use available geographic information system (GIS) data to make interpretations about present Site hydrology, and how the proposed development will be impacted by inundation and where relevant, assessing the development influence on floodwaters entering and exiting the land.
- Conduct a risk assessment for the proposed development ensuring relevant performance criteria, building regulations and directors determination are addressed.
- Assess if the proposed development can achieve and maintain a tolerable risk for the intended life of the use or development without requiring any flood protection measures.
- Determine if the building and works will cause or contribute to flood or inundation on the Site, on adjacent land or public infrastructure
- Provide recommendations for managing inundation risk.

1.3 Cadastral Title

The land studied in this report is defined by the title 182759/5

1.4 Site Setting

The Site watershed influence is presented in Map 1. Floodwater overlays and Site location are presented in Map 2.

2 Assessment

2.1 Proposed Development

Table 1 summarises the provided design documents from which this assessment is based (Attachment 2). The proposed development comprises a dwelling with attached garage and a shed.

Table 1 Project Design Drawings

Drafted By	Project Number	Date Generated	Drawings
Michael Kelly	21012	12/10/2025	3 A03

3.1 Planning

Planning code overlay mapping is presented in Attachment 1 and planning and building regulations are addressed in Attachment 3.

The Site is located within the Sorell Council mapped 1% Annual Exceedance Probability (AEP) inland flooding hazard area (Map 2). The mapping has triggered Flood Prone Areas Hazard Code, meaning that a more detailed investigation is required to further assess inundation risk associated with the proposed development. The defined floodwater level for the land is to be assessed based on proposed Site works.

3.2 Building

According to the Tasmanian Building Regulations 2016, the floor level of each habitable room¹ of the building, being erected, re-erected, or added as part of the work, is to be constructed at least 300 millimetres above the defined flood level for the land.

3.3 Topography

The Site falls gently from the higher ground in the south and east toward the north-western corner. Overland flow runoff from the south naturally collects within the roadside culvert and diverts to a grated pit on the western boundary where it is channelled through a culvert towards the northern corner of the Site (Map 2).

3.4 Stormflow Analysis

Details of the stormflow analysis assessment are presented in Attachment 4. The following are observed:

- The Site is located within a 7 Ha catchment will all water directed towards the north-western corner of 35 Elise Drive (Map 1). Floodwater enters the Site mainly from the east and south, merging in the roadside drain at the end of the driveway (Map 2).
- Under existing conditions, the access driveway intercepts these inflows and directs stormwater toward an existing grated pit located at the top of the drainage easement. From this point, flows are conveyed via an existing 300 mm diameter stormwater culvert within the 3.0 m wide drainage easement to a downstream collection pit located in neighbouring council-maintained land to the north.
- Hydraulic modelling indicates that during the 1% AEP event, flow depths along the access road remain shallow (approximately 0.1–0.2 m) and average velocities are approximately 1.4 m/s. These conditions correspond to a flood hazard rating consistent with Hazard Category H1, indicating generally safe conditions for people, vehicles, and buildings (Figure 2).
- Post-development conditions do not alter the established drainage pathways. The existing drainage infrastructure is capable of conveying the full 1% AEP flows from the eastern and southern catchments to the downstream council collection pit, maintaining the natural discharge location and preventing floodwaters from entering the proposed dwelling or shed footprints.

¹ habitable room - means any room of a habitable building other than a room used, or intended to be used, for a bathroom, laundry, toilet, pantry, walk-in wardrobe, corridor, stair, hallway, lobby, clothes drying room, service or utility room, or other space of a specialised nature occupied neither frequently nor for extended periods.

3.5 Stormwater Management

There is no further capacity in the existing stormwater pipe network to collect runoff from the Site. As a result, roofwater from the proposed dwelling and shed is to be diverted via pipework to the culvert outlet located at the northern corner of the allotment. The existing system does have sufficient capacity to accommodate rainwater tank overflow from the roofed areas for a 5% AEP storm event.

3.6 Finished Floor Levels

The proposed dwelling will be suitably elevated above floodwaters, with habitable floor levels providing more than 300 mm separation above the defined flood level for the Site.

While non-habitable areas are also required to be elevated above the defined flood level, it is strongly recommended that floodwater entry to the shed is further managed by incorporating either:

- A cambered access ramp to divert runoff away from the shed entrance
- A grated trench drain at the shed entrance to intercept water flowing from the south

3.7 Hazard Analysis

A flood hazard class of H1 applies across the entire Site, including areas where local stormwater overflow is not serviced by the existing stormwater pipe network.

4 Risk Assessment

Qualitative risk evaluation criteria have been created to determine fundamental risks that may occur due to development in areas that are vulnerable to inundation hazards.

This qualitative risk assessment technique is based on AS/NZS ISO 31000:2009 and relies on descriptive or comparative characterisation of consequence, likelihood, and the level of risk comparative (rather than using absolute numerical measures).

A risk consequence/likelihood matrix has been selected which is consistent with AS/NZS ISO 31000:2009 guidelines.

Consequence/likelihood criteria have assisted in determining if any risk management measures are required at the Site to mitigate any potential hazards. Adopted consequence/likelihood criteria are presented in Figure 3 Flood Hazard Curve (Ball, et al., 2019). Performance criteria are presented in Attachment 6.

As the existing 300mm stormwater pipe within the drainage easement safely convey the combined inflows to the natural north-western discharge point, with only shallow overland flow occurring along the access road, the associated flood risks are considered low.

5 Conclusion and Compliance Statement

Hydraulic assessment confirms that the existing drainage infrastructure can convey the full 1% AEP flood flows affecting the Site. The proposed development does not increase flood risk on-site or off-site, maintains established drainage pathways, and achieves a tolerable level of flood risk for the intended life of the development without the need for additional flood-mitigation measures.

Subject to routine maintenance of existing drainage infrastructure, the proposed dwelling and shed comply with the Performance Criteria of the Flood-Prone Areas Hazard Code.

Marco Scalisi BSc Msc | Environmental & Engineering Geologist

Project manager

Enviro-Tech Consultants Pty. Ltd.

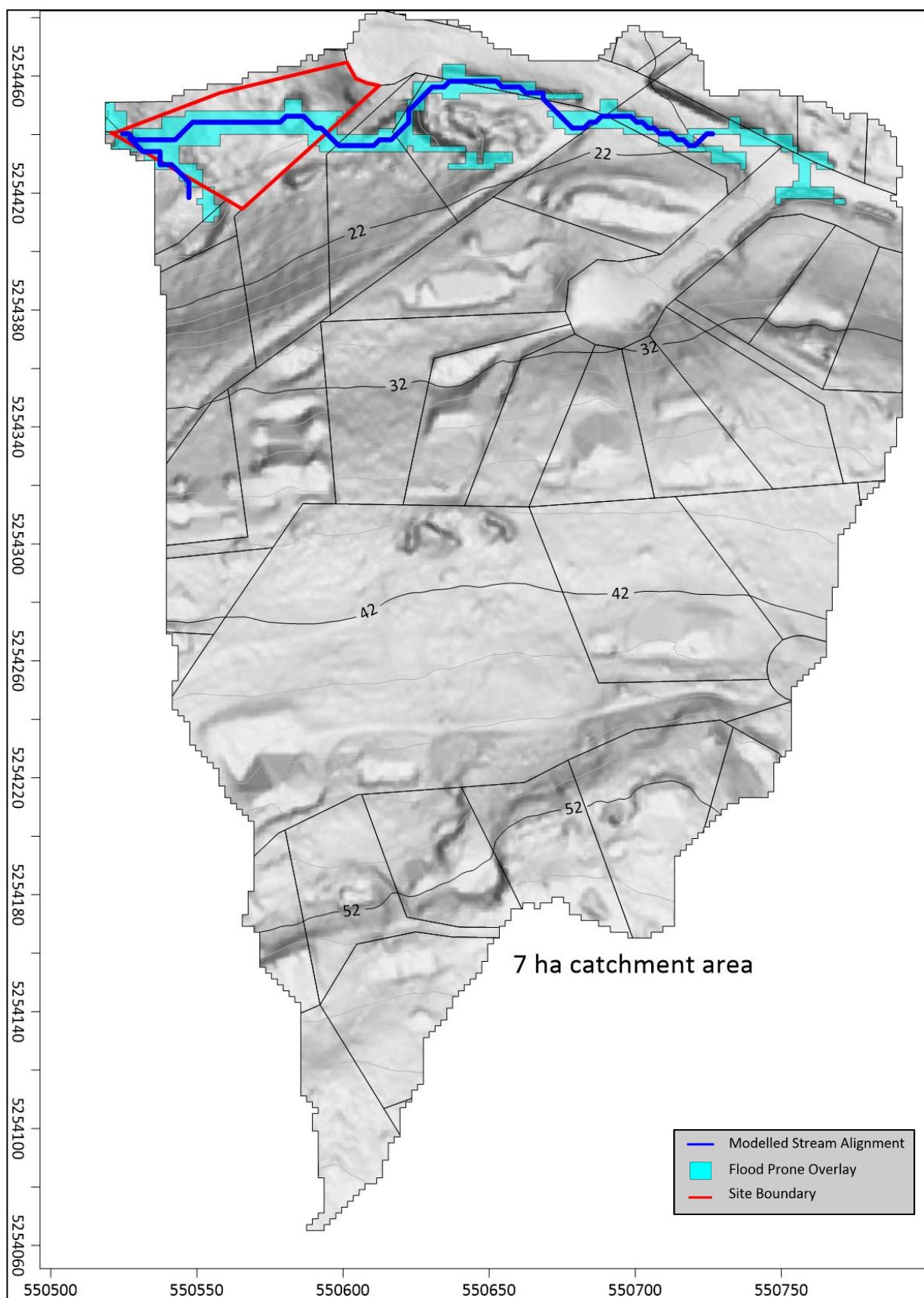
6 References

Ball, J. et al., 2019. Australian Rainfall and Runoff (AR&R): A guide to Flood Estimation. [Online] Available at: <http://book.arr.org.au.s3-website-ap-southeast-2.amazonaws.com/> [Accessed 12 07 2022].

Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, (Editors) Australian Rainfall and Runoff: A Guide to Flood Estimation, © Commonwealth of Australia (Geoscience Australia), 2019.

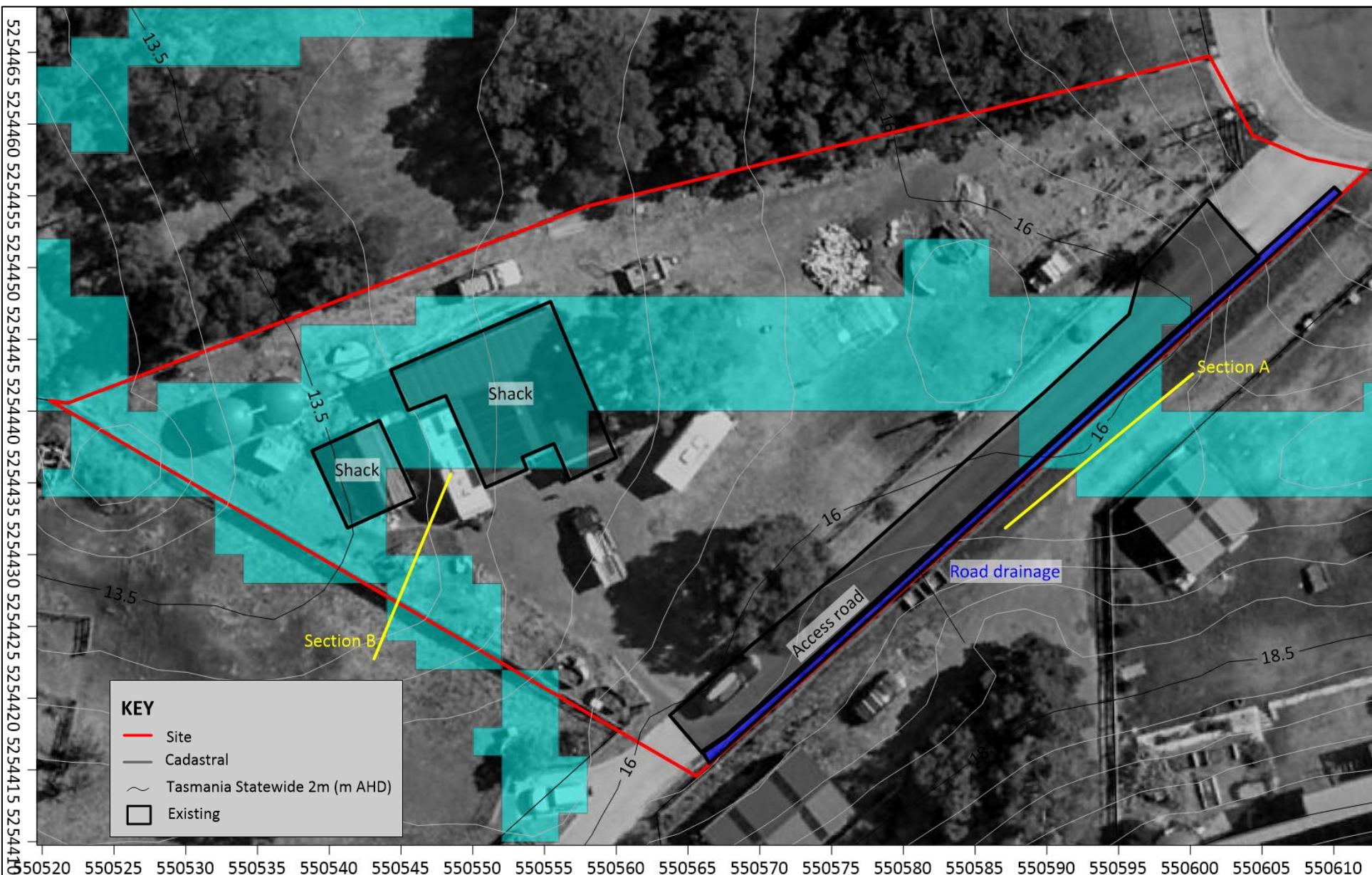
CBOS 2021a. Director's Determination - Riverine Inundation Hazard Areas. Director of Building Control Consumer, Building and Occupational Services, Department of Justice. 8 April 2021

Chow, VT (1959) Open channel hydraulics, McGraw-Hill, New York


Coombes, P., and Roso, S. (Editors), 2019 Runoff in Urban Areas, Book 9 in Australian Rainfall and Runoff - A Guide to Flood Estimation, Commonwealth of Australia, © Commonwealth of Australia (Geoscience Australia), 2019.

N. Maidment, D.R. 1993. Handbook of hydrology. McGraw-Hill. New York, NY.

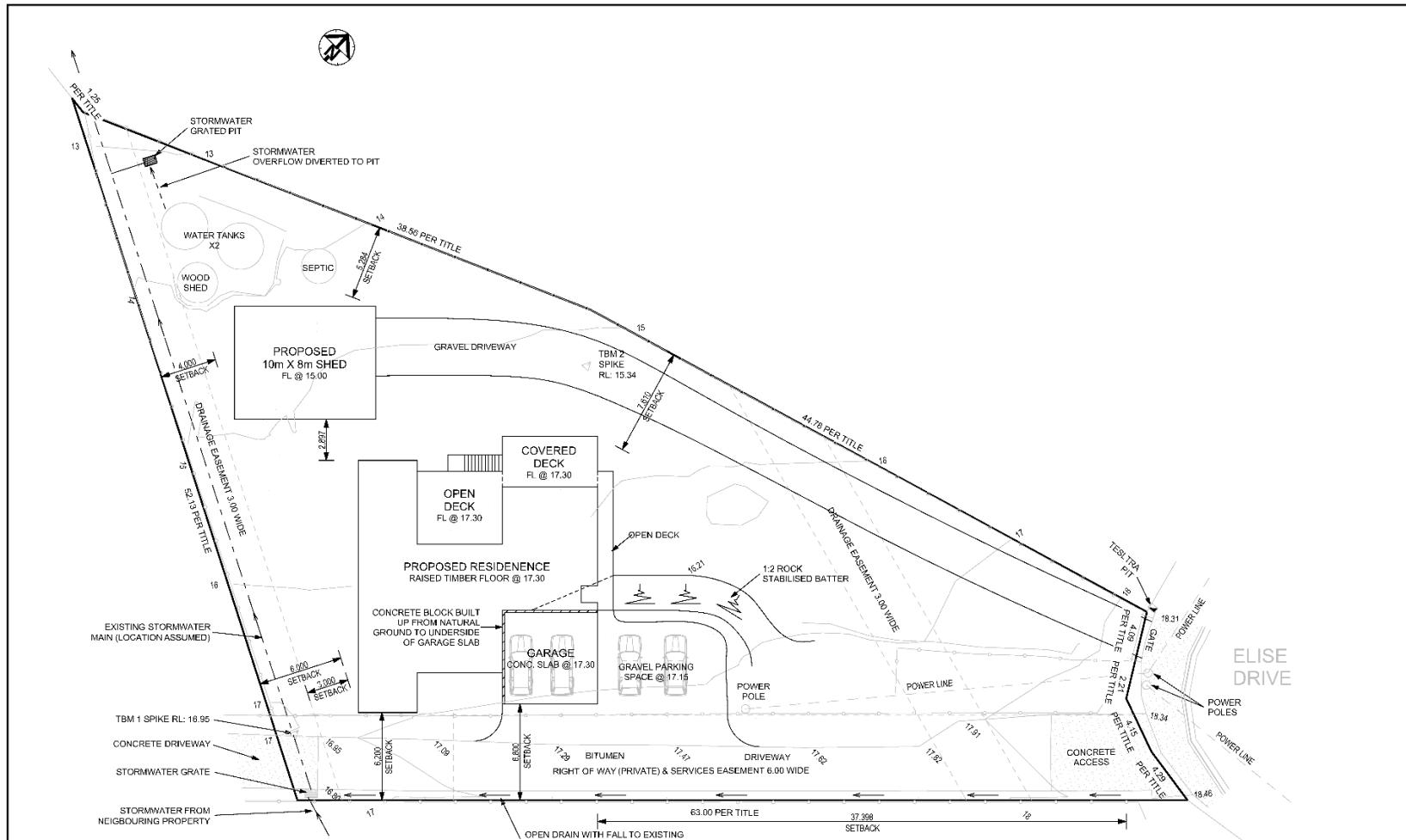
Water and Rivers Commission 2000, Stream Channel Analysis Water and Rivers Commission River Restoration Report No. RR 9.


Attachment 1 Mapping

Map 1

Map 1 Site regional Hillshade setting with Local Surfer Watershed Model

Map 2


Map 2 1% AEP Floodwater hazard overlay prepared by the local government authority and cross section

Map 2

Map 3 Site plan showing drainage paths, proposed works, and

Attachment 2 Preliminary Design Concept Plans

REV	COMMENT	DATE	CLIENT: ANDREW & JESSICA STORY	JOB NO: 21012	PAGE SIZE: A3
A	ISSUED FOR PLANNING APPROVAL	12/10/25	STORY RESIDENCE PROPOSED SITE PLAN	ADDRESS: 35 ELSE DRIVE DODGES FERRY 7173	DATE: 12/10/25 SCALE: 1:250 REV: A

Attachment 3 Planning and Building Regulations

C12.0 Flood-Prone Area Hazard Code

Code Overlay – The LIST Mapping

The Site is located within the Sorell Council mapped 1% Annual Exceedance Probability (AEP) inland flooding hazard area (Map 2). The mapping has triggered Flood Prone Areas Hazard Code, meaning that a more detailed investigation is required to further assess risk associated with the proposed development.

C12.6 Development Standards for Buildings and Works

C12.6.1 Buildings and works within a flood-prone hazard area

C12.6.1 Objective

That:

- (a) building and works within a flood-prone hazard area can achieve and maintain a tolerable risk from flood; and
- (b) buildings and works do not increase the risk from flood to adjacent land and public infrastructure.

C12.6.1 A1 Acceptable Solutions

As there are no acceptable solutions to C12.6.1 (A1), the proposed development is to be assessed against performance criteria.

C12.6.1 P1 Performance Criteria

The proposed development needs to be assessed against the following performance criteria:

- C12.6.1 P1.1 and
- C12.6.1 P1.2.

Assessment Against Development Standards (Clause C12.6.1 – Buildings and Works)

As the proposed driveway, dwelling and shed are located within a flood-prone hazard area, and there are no Acceptable Solutions under Clause C12.6.1 – Buildings and Works within a Flood-Prone Hazard Area, the Performance Criteria P1.1 and P1.2 must be addressed.

Attachment 4 Site Overland Flow Analysis

Flooding Constraints

The following are inferred:

- A Manning coefficient of 0.045 is estimated.
- Assumption there is a conservation of channel flow rates before and after development.

Modelling

Council Modelling

The 1% AEP flood extent identified by Council (shown in blue shading on Map 2) confirms this general overland-flow pathway toward the lower north-western corner of the Site.

Study Modelling

Models are used to estimate floodwater flow inundation levels based on a surface roughness of 0.045.

Existing Floodwaters

The Site is located within a broader 7-hectare catchment, which generates overland flow from the east and south, contributing surface-water runoff toward the north-western boundary of 35 Elise Drive (Map 1). These upstream areas convey shallow sheet-flow and minor channelised runoff through localised depressions that converge near the existing access driveway.

Two primary inflow paths currently influencing floodwater movement at the Site (Figure 1):

1. Eastern inflow (Section A):
 - 1% AEP floodwater flow enters the Site from the adjacent eastern property, travelling through a natural surface depression and continuing onto the Site to the east near the centre of the driveway. Historically, the water did pass over the building envelope areas, but construction of the existing driveway has diverted floodwaters away from the proposed dwelling and towards the western boundary of the Site.
 - Pre-development cross-section modelling (Section A — Existing Floodwaters) shows a 1% AEP flow rate of $0.14 \text{ m}^3/\text{s}$, conveyed within a broad, shallow channel. Flow depths are shallow ($\sim 0.06 \text{ m}$), and the pathway discharges toward the Site's north-west.
 -
2. Southern inflow (Section B):
 - A second inflow originates from the elevated land to the south, draining along the southern boundary of the Site via a natural surface depression following the proposed southern boundary drainage easement.
 - Pre-development cross-section modelling (Section B — Existing Floodwaters) shows a 1% AEP flow rate of $0.13 \text{ m}^3/\text{s}$, conveyed within a broad, shallow channel. Flow depths are shallow ($\sim 0.05 \text{ m}$), and the pathway discharges toward the north-west corner of the lot where there is a confluence with the eastern flow.

The eastern and southern inflows historically converged on the lower portion of the Site but now converge at the end of the access road (driveway) at the top of the drainage easement. The floodwaters are not currently contained within the easement and spit both towards the neighbouring property and towards the proposed shed.

Proposed Development

The proposed development comprises a dwelling with garage and a shed. The dwelling/garage finished-floor-level (FFL) is at 17.3 m AHD and the shed FFL at 15.0 m AHD.

Although the eastern portion of the existing access road lies within the mapped flood extent, the road platform southern (upgradient) camber already functions as a shallow flow path that currently diverts ALL eastern inflow westwards (without entering the interior of the Site) towards an existing 900mm x 600mm x 900mm deep stormwater pit. From here an existing 300 mm culvert runs the entire length of the 3m wide easement to a larger collection pit in the neighbouring council-maintained land to the north. The pit at the top of the driveway also receives stormwater from a neighbouring property to the south as shown on Map 3.

Under current conditions, the existing road drainage will continue to intercept this inflow and capture/divert the full 1% AEP event, diverting water flow towards the western boundary where the existing drainage easement is located (Figure 2).

Hydraulic modelling for Section C—representative of post-development conditions along the access road—indicates an average flow velocity of approximately 1.4 m/s and only 0.2m depth, resulting in a flood hazard rating consistent with Hazard Category H1, meaning generally safe for people, vehicles and buildings (see Figure 3—Flood Hazard Curve, Ball et al., 2019).

The existing 300 mm stormwater pipe is sufficient to convey 1% AEP flows from the eastern and southern catchments to the downstream council collection pit.

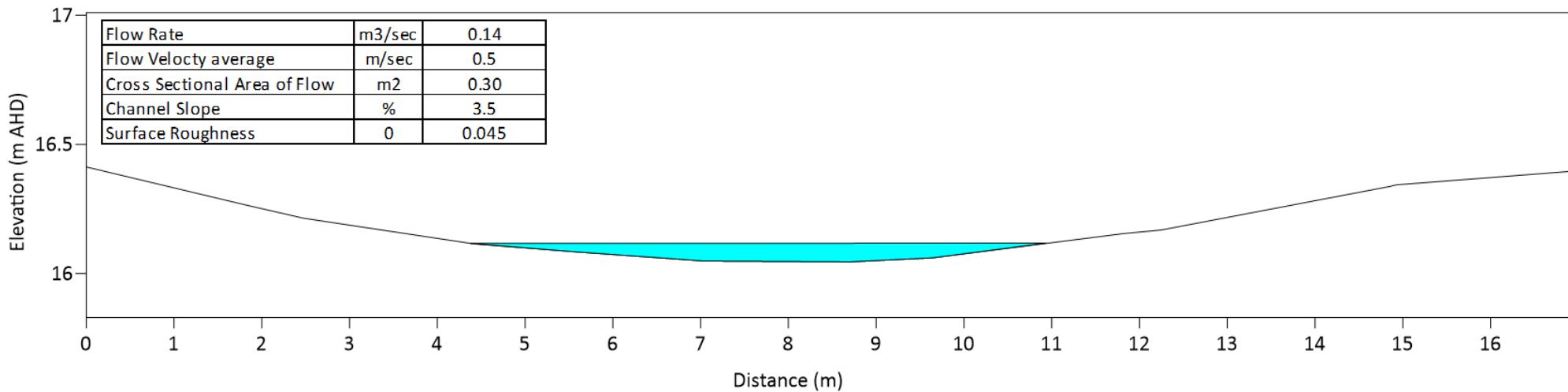
It is also proposed that a grated sump is installed on near the north western boundary of the property to collect surface water and overflow stormwater which has a calculated 1% AEP peak flow rate of 0.04 m³/sec. This will have minimal effect in the overall 1% AEP floodwater at the site and can be diverted to the existing drainage easement.

Through modelling, it has been determined that the concrete culvert has sufficient capacity (0.27m³/s) to transmit the entire 1% AEP stormwater flow encroaching onto the Site from the properties to the south.

There is no further capacity in the pipe to collect the Site stormwater, and therefore stormwater runoff from the roofed areas is to be serviced through pipework diversions to the culvert outlet on the northern corner of the allotment. The stormwater system does have capacity to service tank overflow from the roofed area overflow given a 5% AEP storm event.

Finished Floor Levels

The proposed dwelling is suitable elevated above floodwaters with in excess of 300mm separation distance of habitable from finished floor levels above the defined flood level for the Site.


Although there are requirements for non-habitable dwelling to have floor levels elevated above the defined flood level for the Site, it is strongly recommended that either:

- the access ramp for the shed is designed with a camber to divert water away from the entrance; and/or
- A grated trench is installed at the entrance of the shed to prevent water inflow originating from the south.

Hazard Analysis

A hazard class of H1 is applicable for the entire Site, including areas where site stormwater overflow is not serviced by the stormwater pipe.

Section A - Existing floodwaters

Section B - Existing floodwaters pre 2017

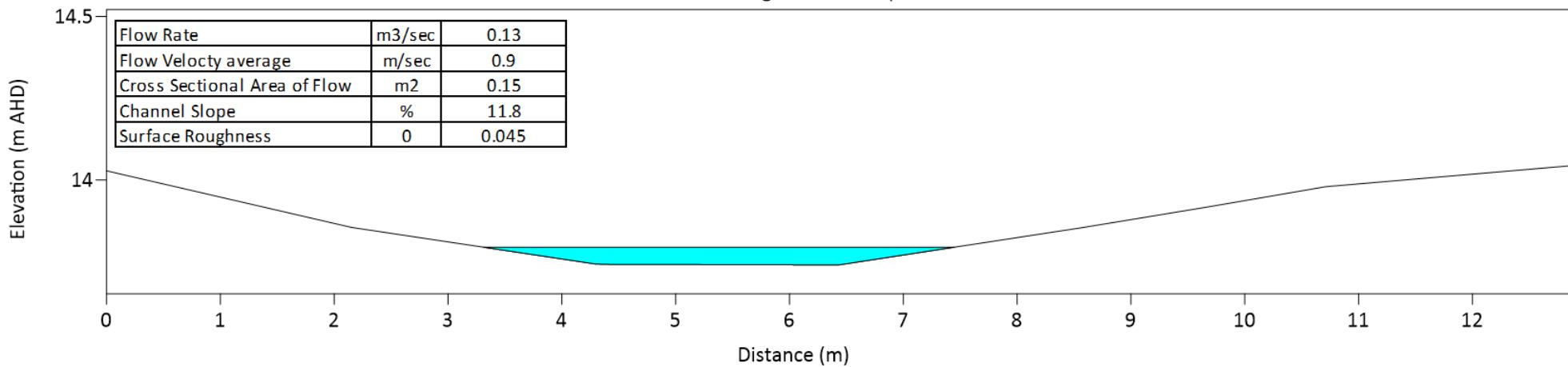


Figure 1 Cross-sections A and B showing pre-development 1% AEP floodwater depths and flow characteristics

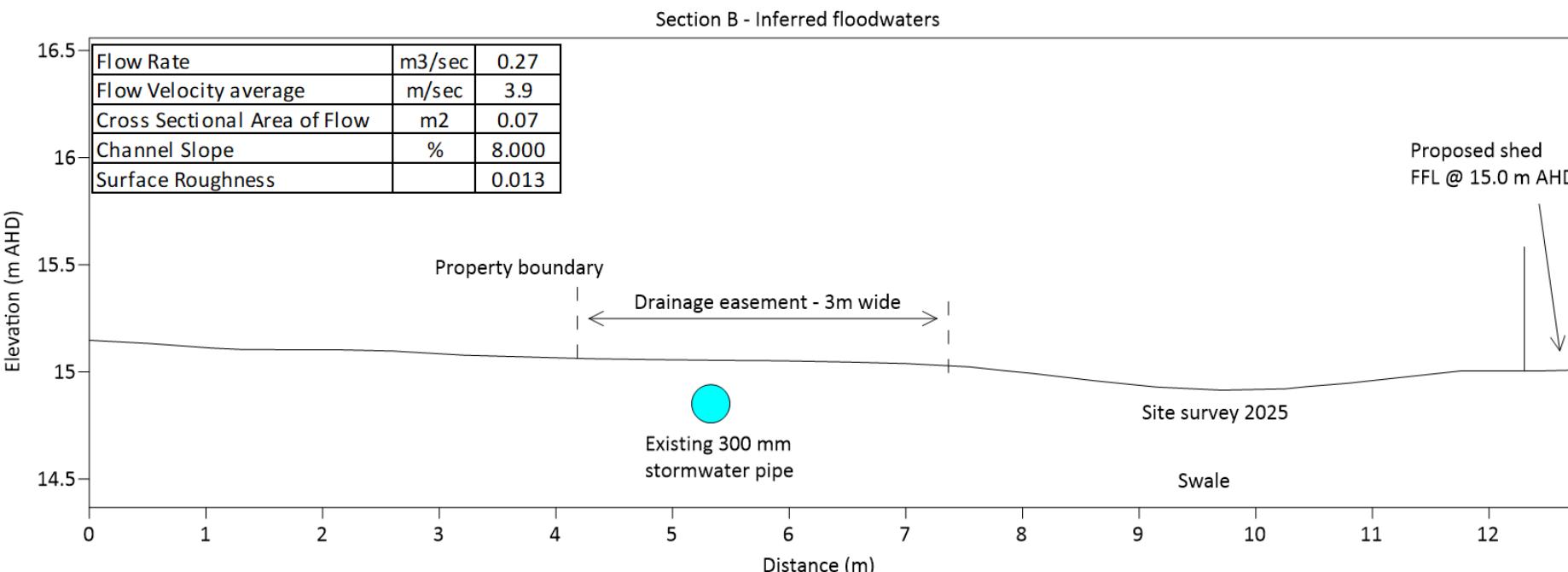
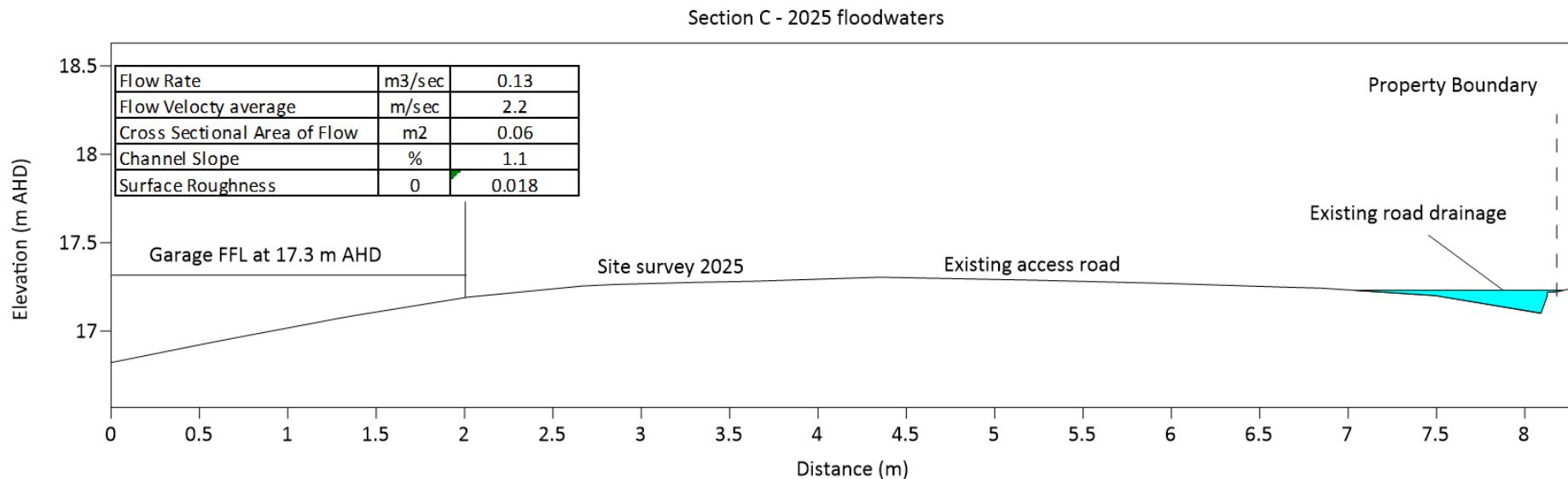
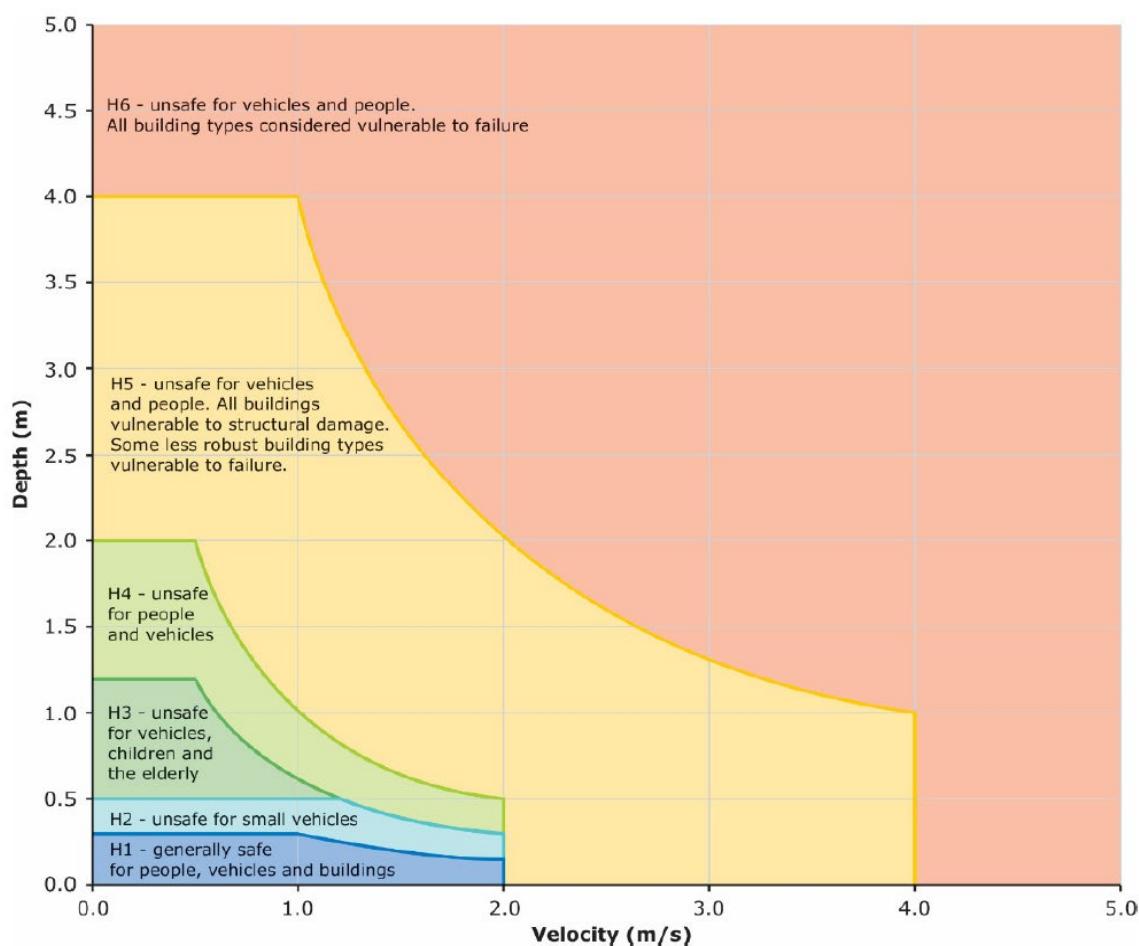




Figure 2 Post-development cross-sections illustrating Section C and the existing 300 mm stormwater pipe (section B)

Figure 3 Flood Hazard Curve (Ball, et al., 2019)

Attachment 5 Qualitative Terminology

almost certain	Is expected to occur in most circumstances; and/or there is a high level of recorded incidents; and/or strong anecdotal evidence; and/or a strong likelihood the event will recur; and/or great opportunity, reason, or means to occur; may occur once every year or more
Likely	Will probably occur in most circumstances; and/or regular recorded incidents and strong anecdotal evidence; and/or considerable opportunity, reason or means to occur; may occur once every five years
Possible	May occur at some time; and/or few, infrequent or randomly recorded incidents or little anecdotal evidence; and/or very few incidents in associated or comparable organisations, facilities or communities; and/or some opportunity, reason or means to occur; may occur once every 20 years
Unlikely	Is not expected to occur; and/or no recorded incidents or anecdotal evidence; and/or no recent incidents in associated organisations, facilities or communities; and/or little opportunity, reason or means to occur; may occur once every 100 years
Rare	May occur only in exceptional circumstances; may occur once every 500 or more years

Source: Commonwealth of Australia, 2004: Emergency Management Australia – Emergency Risk Management Applications Guide Manual 5

Consequence Rating	Public Safety	Local growth and economy	Community and Lifestyle	Environment & sustainability	Public administration
Catastrophic	Large numbers of serious injuries or loss of lives	Local decline leading to business failure, loss of employment, local hardship	Local area seen as very unattractive, significant decline, and unable to support community	Major widespread loss of environmental amenity and progressive irrecoverable environmental damage	Public Administration would fail and cease to be effective
Major	Isolated instances of serious injuries or loss of lives	Local stagnation such that businesses unable to thrive and imbalance between employment and local population growth	Severe and widespread decline in services and quality of life within community	Severe loss of environmental amenity and a danger of continuing environmental damage	Public administration would struggle to remain effective and would be perceived as being in danger of failing completely
Moderate	Small number of injuries	Significant general reduction in economic performance relative to current forecasts	General appreciable decline in services	Isolated significant instances of environmental damage that might be reversed with intensive efforts	Public administration would be under significant pressure on numerous fronts
Minor	Serious near misses or minor injuries	Individually significant but isolated areas of reduction in economic performance relative to current forecasts	Isolated noticeable examples of decline in services	Minor instances of environmental damage that could be reversed	Isolated instances of Public administration being under significant pressure
Insignificant	Appearance of	Minor shortfall relative to current	There would be minor areas in which the region	No environmental damage	There would be some minor

	threat by no actual harm	forecasts	was unable to maintain is current services		instances of public administration being under more than usual stress but it could be managed
Likelihood (L)	Consequences (C)				
	Insignificant	Minor	Moderate	Major	Catastrophic
Almost certain	MEDIUM	medium	high	extreme	extreme
Likely	low	medium	high	high	extreme
Possible	low	medium	medium	high	high
Unlikely	low	low	medium	medium	medium
Rare	low	low	low	low	medium

Adapted from DCC 2006, 40.

Attachment 6 Tasmanian Planning Scheme – Flood Prone Hazard Areas

Building and Works

Objective ,That:

- (a) building and works within a flood-prone hazard area can achieve and maintain a tolerable risk from flood; and
- (b) buildings and works do not increase the risk from flood to adjacent land and public infrastructure.

C12.6.1 P1.1 Buildings and works within a flood-prone hazard area – risk assessment

Performance Criteria C12.6.1 P1.1	Relevance	Management Options	Likelihood	Consequence	Risk	Further Assessment Required
Buildings and works within a flood-prone hazard area must achieve and maintain a tolerable risk from a flood, having regard to:						
(a) the type, form, scale and intended duration of the development;	The type, form and scale of the development are small and low-impact in terms of flood risk. The proposed dwelling and garage have finished-floor-levels set well above the 1% AEP flood extent, and the non-habitable works (driveway and open deck) are designed to remain passable under shallow overland-flow conditions.	none required	Unlikely	Minor	Low	No
(b) whether any increase in the level of risk from flood requires any specific hazard reduction or protection measures;	Hydraulic modelling confirms that the development does not increase flood risk either on-site or off-site. Overland-flow paths are maintained, and post-development flow velocities and depths remain similar to existing conditions.	No structural mitigation is required, as the design allows for the free passage of overland flow.	Unlikely	Minor	Low	No
(c) any advice from a State authority, regulated entity or a council; and						
(d) the advice contained in a flood hazard report.						

C12.6.1 P1.2 Buildings and works within a flood-prone hazard area - flood hazard reporting

Performance Criteria C12.6.1 P1.2	Relevance	Management Options	Likelihood	Consequence	Risk	Further Assessment Required
A flood hazard report also demonstrates that the building and works:						
(a) do not cause or contribute to flood on the Site, on adjacent land or public infrastructure; and	<p>Based on the flood modelling, the proposed development does not increase flood risk to adjacent land, public infrastructure, or the site itself. All 1% AEP inflows from the eastern and southern catchments are intercepted and conveyed via the existing drainage system, including the 300 mm diameter stormwater pipe, to the downstream collection pit within neighbouring council-maintained land. As a result, floodwaters are fully managed within the established drainage network, with no adverse off-site impacts</p>	<p>Not required</p>	<p>Unlikely</p>	<p>Minor</p>	<p>Low</p>	<p>No</p>
(b) can achieve and maintain a tolerable risk from a 1% annual exceedance probability flood event for the intended life of the use without requiring any flood protection measures.	<p>The existing drainage system within the 3.0 m wide drainage easement is capable of intercepting and conveying the full 1% AEP flows from the combined eastern and southern catchments to the downstream council-maintained collection pit. Hydraulic modelling indicates that flood depths and velocities adjacent to the proposed dwelling and shed remain low under the 1% AEP event, maintaining a tolerable flood risk for the intended life of the development without the need for additional structural flood-protection measures</p>	<p>Not required</p>	<p>Unlikely</p>	<p>Minor</p>	<p>Low</p>	<p>No</p>

CERTIFICATE OF QUALIFIED PERSON – ASSESSABLE ITEM

Section 321

To: Andrew Story
35 ELISE DR
DODGES FERRY

Owner /Agent
Address
Suburb/postcode

Form **55**

Qualified person details:

Qualified person: Kris Taylor
Address: 445 Macquarie Street Hobart
Phone No: 0476 595 889
Fax No:
Licence No: NA Email address: office@envirotechtas.com.au

Qualifications and Insurance details: Bachelor of Science with Honours in Geology with PI Insurance to \$2,000,000 including hydrology and environmental coastal inundation hazard assessments

(description from Column 3 of the Director's Determination - Certificates by Qualified Persons for Assessable Items)

Speciality area of expertise: Engineering Geology

(description from Column 4 of the Director's Determination - Certificates by Qualified Persons for Assessable Items)

Details of work: Riverine Inundation Assessment

Address: 35 Elise Drive
Dodies Ferry

Lot No: 5
Certificate of title No: 182759/5

The assessable item related to this certificate:

Riverine (flood prone areas) inundation hazard assessment

(description of the assessable item being certified)

Assessable item includes –

- a material;
- a design
- a form of construction
- a document
- testing of a component, building system or plumbing system
- an inspection, or assessment, performed

Certificate details:

Certificate type: Geological

(description from Column 1 of Schedule 1 of the Director's Determination - Certificates by Qualified Persons for Assessable Items n)

This certificate is in relation to the above assessable items, at any stage, as part of – (tick one)

building work, plumbing work or plumbing installation or demolition work

OR

a building, temporary structure or plumbing installation

In issuing this certificate the following matters are relevant –

Documents:	Enviro-Tech Consultants Pty. Ltd. 2025. Flood Hazard Assessment Report for a Proposed Dwelling, 35 Elise Drive - Dodges Ferry. Unpublished report for Andrew Story by Enviro-Tech Consultants Pty. Ltd., 14/11/2025.
Relevant calculations:	
References:	<ul style="list-style-type: none">- Director's Determination - Riverine Inundation Hazard Areas- Tasmanian Planning Scheme – State Planning Provisions - Flood-Prone Areas Hazard Code- Part 5 (Work in Hazardous Areas) of the Building Regulations 2016; Division 2 – Riverine Inundation

Substance of Certificate: (what it is that is being certified)

- An assessment of:
- Defined Site floodwater levels or designated floodwater levels
- 1% AEP floodwater hazards based on building design or 2100 scenarios

Scope and/or Limitations

Impact from changes to Site levels, structures or water flow obstructions on the Site (beyond what is detailed within Site proposal documents) or on neighboring properties are outside of the scope of this assessment.

I certify the matters described in this certificate.

Qualified person:

Signed:

Certificate No:

Date:

14/11/2025

WATERWAY AND COASTAL PROTECTION AREA ASSESSMENT

Proposed Dwelling And Shed 35 ELISE DRIVE - DODGES FERRY

Client: Andrew Story

Certificate of Title: 182759/5

Investigation Date: 14/11/2025

Sorell Council

Development Application: Development
Application - 35 Elise Drive, Dodges Ferry.pdf

Plans Reference:P1
Date Received:29/01/2026

Refer to this Report As

Enviro-Tech Consultants Pty. Ltd. 2025. Natural Values Assessment Report for a Proposed Dwelling and shed, 35 Elise Drive - Dodges Ferry. Unpublished report for Andrew Story by Enviro-Tech Consultants Pty. Ltd., 14/11/2025.

Report Distribution:

This report has been prepared by Enviro-Tech Consultants Pty. Ltd. for the use by parties involved in the proposed residential development of the property named above. It is to be used only to assist in managing any existing or potential erosion hazards relating to the Site and its development.

Permission is hereby given by Enviro-Tech Consultants Pty. Ltd., and the client, for this report to be copied and distributed to interested parties, but only if it is reproduced in colour, and only distributed in full. No responsibility is otherwise taken for the contents.

1 Introduction

1.1 *Background*

Enviro-Tech Consultants Pty. Ltd. (Envirotech) were contracted by Andrew Story to prepare a natural assets assessment for a proposed dwelling with attached garage and a shed at 35 Elise Drive, Dodges Ferry. This report has been written to address planning scheme overlay codes in general accordance with the state-wide planning provisions for Sorell City Council. The proposed development has triggered C7.0 Natural Assets Code which are addressed within this report:

1.2 *Objectives*

The objective of the Site investigation is to:

- Identify which overlay codes apply to the Site in terms of coastal vulnerability and determine planning scheme exemptions, acceptable solutions, and where applicable performance criteria.
- Conduct a risk assessment for the proposed development ensuring relevant performance criteria.
- Determine if the building and works will cause or contribute to erosion, flooding, or natural assets disturbance on the site or on adjacent land or public infrastructure
- Provide recommendations for managing or mitigating potential impacts on natural assets

1.3 *Cadastral Title*

The land studied in this report is defined by the title 182759/5

1.4 *Site Setting*

The Site is located on gently sloping land within a rural–residential area, with ground levels falling from approximately 17.5 m AHD in the south and east toward about 15 m AHD at the north-western boundary (Map 1). The terrain forms a broad shallow depression that conveys overland flow toward the lower portion of the Site. A shallow surface drainage line runs westward along the existing access road but does not intersect the proposed building footprints. The surrounding landscape consists of open grassed areas, scattered trees, and neighbouring rural-residential lots.

2 Planning

Planning code overlay mapping is presented in Attachment 1 and planning and building regulations are addressed in Attachment 3.

2.1 *Proposed Development*

The proposed development comprises a dwelling with garage and a shed.

2.2 *Natural Assets Code*

Parts of the proposed dwelling and shed fall within the waterways and coastal protection overlay (Map 1). Natural Assets Code C7.0 Development Standards for Building and Works E7.6 relevant to this code are addressed within this report. The proposed driveway does not fall within the overlay.

Given the site is not affected by coastal processes, the acceptable solutions and performance criteria are not applicable to the proposed Site development.

3 Potential for Impact

3.1.1 Vegetation

- Minor disturbance to native herbivore grazed grasses where the WCPA overlaps with the building envelope only.

3.1.2 Cut and Fill

- Minimal cut and fill will be required to accommodate the proposed building footprint.
- Proposed works will not affect slope stability or result in disturbance to drainage patterns.

3.1.3 Erosion – Overland Flow

- Minor surface erosion may occur during construction due to rainfall or wind exposure.
- Based on the “Wastewater Assessment Report” conducted by Doyle Soil in May 2023, the risk of erosion is low, with soils classified as moderately dispersive (Class 2).
- The existing terrain and vegetation outside the footprint will retain overland flow, reducing sediment mobilisation.
- Runoff rates are expected to remain low due to the shallow site gradients and the short overland-flow path toward the north-western boundary.

3.1.4 Erosion – Channelled Flow

See: “Enviro-Tech Consultants Pty. Ltd. 2025. Flood Prone Areas Assessment Report for a Proposed Dwelling and shed, 35 Elise Drive - Dodges Ferry. Unpublished report for Andrew Story by Enviro-Tech Consultants Pty. Ltd., 14/11/2025”

- Under current and proposed scenarios, stormwater movement along the driveway is low velocity and will not result in excessive scouring if drainage rock is used in the internal margins.
- The culvert along the easement is serviced and maintained by the Sorell Council.

4 Management

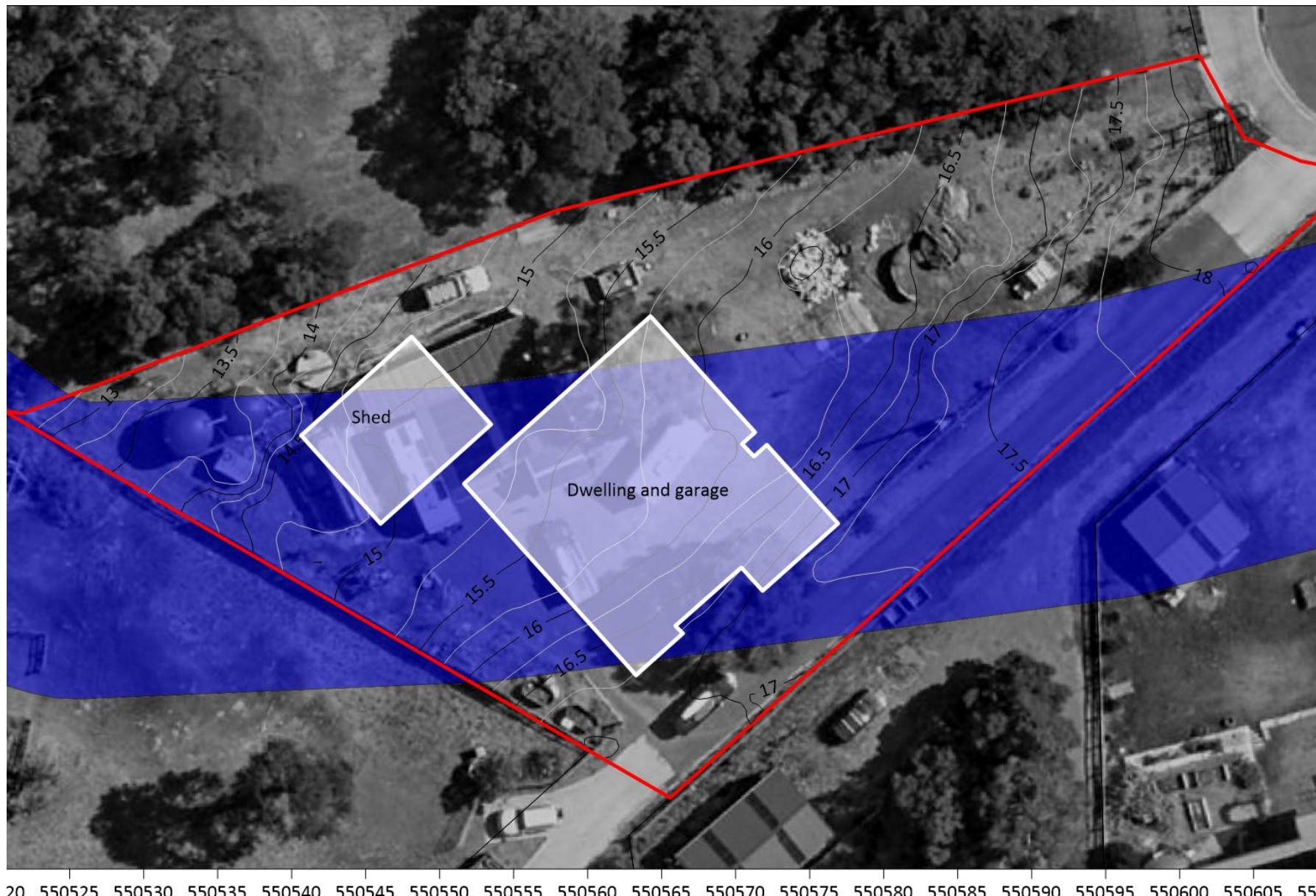
4.1.1 Site Specific

- Swale to be vegetated with grass and to be maintained to prevent entrapment of fines.
- Drainage rock to be placed alongside the internal road margins to reduce scour.
- Drainage rock installed into pits side of the road crossing culvert to prevent scour.
- Geofabric to be placed below all areas of drainage rock to prevent erosion.
- A Soil and Water Management Plan (SWMP) will be implemented prior to construction to manage erosion and sediment during works.
- Where soils are exposed (e.g., during swale excavation, pit installation or minor cut/fill), temporary sediment controls such as silt fencing, straw wattles or diversion bunds will be used.
- Disturbed surfaces will be stabilised promptly through mulching or establishment of grass cover suitable for local conditions, consistent with the vegetated-swale design assumptions.
- The grated pit, culvert inlet/outlet, and swale will be kept free of debris during construction to ensure design flow capacity is maintained.

4.1.2 Guidelines

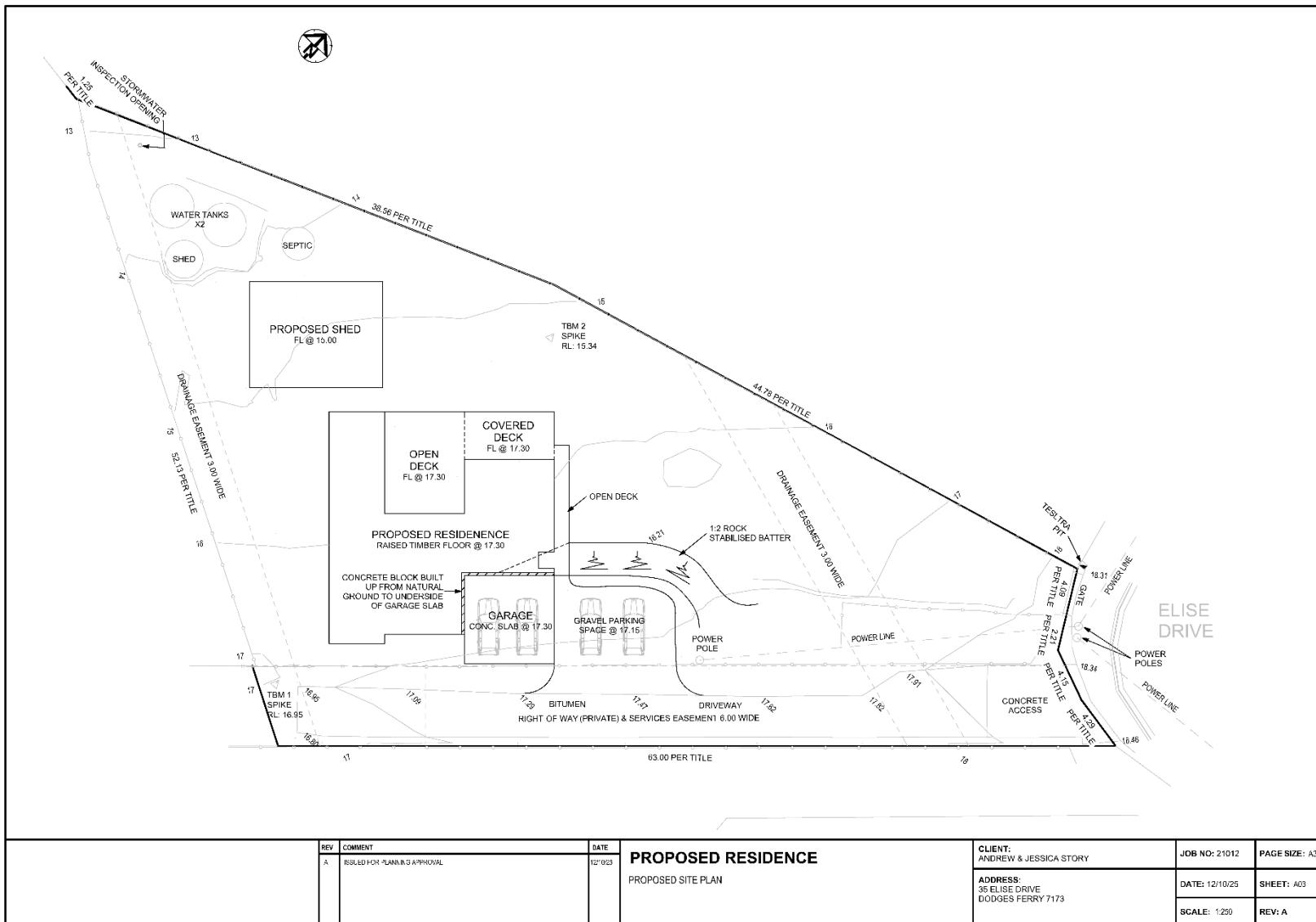
For general guidance on erosion and sediment management during small-scale civil works, the following document is recommended:

- Best-practice guidelines in the Wetlands and Waterways Works Manual



Kris J Taylor BSc (Hons) | Environmental & Engineering Geologist

Director


Enviro-Tech Consultants Pty. Ltd.

Attachment 1 Mapping

Map 1 Waterways and Coastal Protection Overlay and proposed structures

Attachment 2 Preliminary Design Concept Plans

Attachment 3 Planning and Building Regulations

Tasmanian Planning Scheme

C7.0 Natural Assets Code

Code Overlay – The LIST Mapping

The Site falls within the Natural Assets Code C7.6.1 – Waterways and Coastal Protection Area Overlay (WCPA) overlay presented in Map 1.

C7.6. Development Standards for Building and Works

C7.6.1 Objective

That buildings and works within a waterway and coastal protection area or future coastal refugia area will not have an unnecessary or unacceptable impact on natural assets.

C7.6.1 Acceptable Solutions

The proposed development is to be assessed against Natural Assets Code C7.6.1 acceptable solutions presented in Table 2.

C7.6.1 Performance Criteria

Meeting various performance criteria C7.6.1 is to be assessed by way of risks assessment, with performance solutions summarised in Attachment 4.

C7.6.1 P1.1 Performance Criteria - Buildings and Works – Waterways and Coastal Protection

The proposed development does not meet C7.6.1 A1 given that the development is not within a building area on a sealed plan approved under this planning scheme. C7.6.1 P1.1 performance solutions therefore needs to be addressed.

Table 1 Natural Asset Code Acceptable Solutions

Natural Asset Code	Acceptable Solution	Overlay	Performance Solution	Performance Solution to be Addressed	Justification
C7.6.1 A1 (a)	be within a building area on a sealed plan approved under this planning scheme;	WCPA	C7.6.1 P1.1	Yes	Does not meet acceptable solutions The proposed development does not meet C7.6.1 A1 given that the development is not within a building area on a sealed plan approved under this planning scheme.
C7.6.1 A1 (b)	in relation to a Class 4 watercourse, be for a crossing or bridge not more than 5m in width; or	WCPA	C7.6.1 P1.1	No	Not applicable
C7.6.1 A1 (c)	if within the spatial extent of tidal waters ¹	WCPA	C7.6.1 P1.2	No	Not applicable
C7.6.1 A2	Buildings and works within a future coastal refugia area must be located within a building area on a sealed plan approved under this planning scheme.	FCRA	C7.6.1 P2.1 C7.6.1 P2.2	No	Not applicable
C7.6.1 A3	Development within a waterway and coastal protection area or a future coastal refugia area must not involve a new stormwater point discharge into a watercourse, wetland or lake.	FCRA or WCPA	C7.6.1 P3	No ²	Not applicable
C7.6.1 A4	Dredging or reclamation must not occur within a waterway and coastal protection area or a future coastal refugia area.	FCRA or WCPA	C7.6.1 P4.1 C7.6.1 P4.1	No	Not applicable
C7.6.1 A5	Coastal protection works or watercourse erosion or inundation protection works must not occur within a waterway and coastal protection area or a future coastal refugia area.	FCRA or WCPA	C7.6.1 P5	No	Not applicable

¹ be an extension to an existing boat ramp, car park, jetty, marina, marine farming shore facility or slipway that is not more than 20% of the area of the facility existing at the effective date.

Attachment 4 Performance Criteria – Natural Assets Code

C7.6.1 P1.1 - Buildings and works – waterways and costal protection area

Performance Criteria C7.6.1 P1.1	Relevance	Management Options
Buildings and works within a waterway and coastal protection area must avoid or minimise adverse impacts on natural assets³, having regard to:		
(a) impacts caused by erosion, siltation, sedimentation and runoff	No works occur within a watercourse or drainage line. Overland flow is shallow and the site has low erosion risk due to the limited disturbance associated with the development.	A Soil and Water Management Plan (SWMP) will be implemented prior to works.
(b) impacts on riparian or littoral vegetation	No riparian or littoral vegetation is present. The area within the overlay is already cleared.	None required; no vegetation removal is proposed.
(c) maintaining natural streambank and streambed conditions	No defined streambank or watercourse occurs at this location.	Not applicable.
(d) impacts on in-stream natural habitat	No in-stream features such as logs, rocks or trailing vegetation are present on site.	Not applicable.
(e) the need to avoid significantly impeding natural flow and drainage	The development does not impede natural flow paths. Overland flow continues to discharge toward the north-west consistent with pre-development conditions.	Not applicable.
(f) the need to maintain fish passage, where known to exist	No watercourse is present; therefore no fish passage is affected.	Not applicable.
(g) the need to avoid land-filling of wetlands	No wetlands occur on site, and no filling is proposed within the overlay.	Nil required.
(h) the need to group new facilities with existing facilities	The development is sited with and consistent in scale and form with existing buildings.	Nil required.
(i) minimising cut and fill	Only minor cut and fill is required and will be carried out sensitively to follow natural landform.	Earthworks to be managed under the SWMP.
(j) building design that responds to the particular size, shape, contours or slope of the land	The building design follows site contours and maintains appropriate finished floor levels.	Slab-on-ground design aligns with natural landform.
(k) minimising impacts on coastal processes	The site is not located within a coastal or marine environment.	Not applicable.
(l) minimising the need for future works to protect natural assets, infrastructure and property	No future stabilisation or drainage protection works are anticipated. The recommended stormwater measures maintain stable flow conditions.	Stable founding conditions and appropriate surface drainage are included in the design.
(m) environmental best-practice guidelines	The SWMP will reflect best-practice sediment and erosion control principles.	Temporary controls (e.g., silt fencing, diversion drains) will be implemented.
(n) guidelines in the Tasmanian Coastal Works Manual	Not applicable; the site is inland and not within a coastal zone.	Nil required

³ means biodiversity, environmental flows, natural stream bank and stream bed condition, riparian vegetation, littoral vegetation, water quality, wetlands, river condition and waterway and/or coastal values

PROPOSED RESIDENCE FOR ANDREW & JESSICA STORY AT:

35 ELISE DRIVE, DODGES FERRY 7173

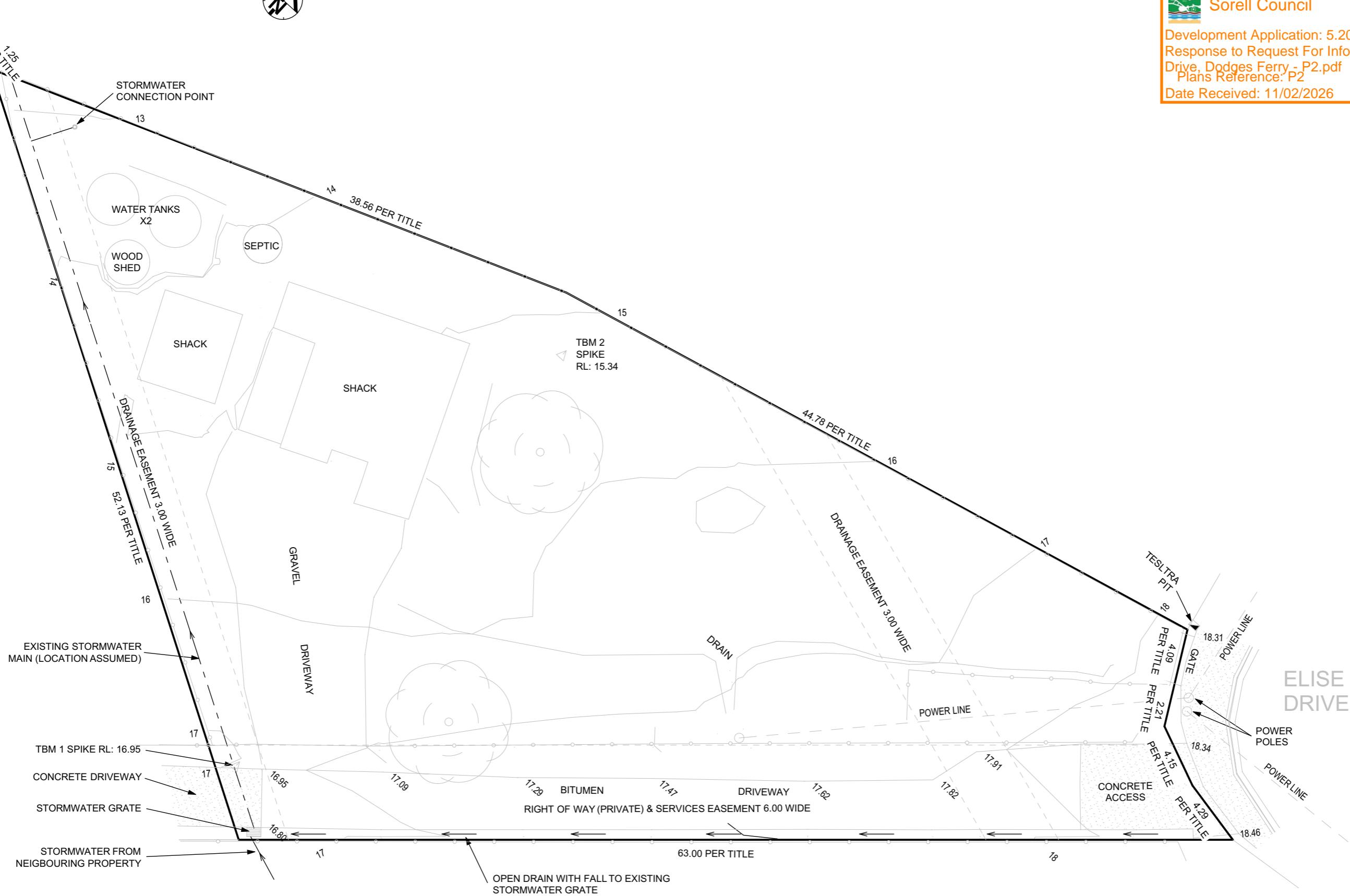
<u>DRAWING SCHEDULE</u>	<u>SITE DETAILS</u>	<u>FLOOR AREAS</u>
A01 - COVER PAGE	- TITLE REFERENCE - 182759/5	SITE AREA = 2083m ²
A02 - EXISTING SITE PLAN	- CLIMATE ZONE - 7	HOUSE = 187.67m ²
A03 - PROPOSED SITE PLAN	- SITE CLASS - TBC	GARAGE = 46.34m ²
A04 - FLOOR PLAN	- WIND CLASS - TBC	COVERED DECK = 24.41m ²
A05 - ELEVATIONS	- ALPINE AREA - NO	OPEN DECKS = 42.70m ²
A06 - ELEVATIONS	- CORROSIVE ENVIRONMENT - MODERATE - REFER TO BCA SECTION 3.4.2.2 & BCA TABLE 3.4.4.2	SHED = 90.00m ²
A07 - SHED PLAN AND ELEVATIONS	- BAL RATING - NA (NOT IN A BUSHFIRE PRONE AREA)	TOTAL = 391.11m ²
A08 - 3D VIEWS	- OTHER KNOWN HAZARDS: WATERWAY AND COASTAL PROTECTION AREA, AIRPORT OBSTACLE LIMITATION AREA AND FLOOD PRONE AREA. - SPECIFIC AREA PLANS: SOR-S2.0 SOUTHERN BEACHES ON SITE WASTE WATER AND STORMWATER MANAGEMENT SPECIFIC AREA PLAN	SITE COVERAGE = 18.78%

Sorell Council

Development Application: 5.2026.15.1 -
Response to Request For Information - 35 Elise
Drive, Dodges Ferry - P2.pdf
Plans Reference: P2
Date Received: 11/02/2026

MICHAEL KELLY
LICENCED BUILDING DESIGNER
308654680
0428 901 871
michael.kelly324@gmail.com

REV	COMMENT	DATE	CLIENT: ANDREW & JESSICA STORY	JOB NO: 21012	PAGE SIZE: A3
A	ISSUED FOR PLANNING APPROVAL	26/01/26	ADDRESS: 35 ELISE DRIVE DODGES FERRY 7173	DATE: 26/01/26	SHEET: A01
			SCALE: N/A	REV: A	


STORY RESIDENCE

COVER PAGE

Sorell Council

Development Application: 5.2026.15.1 -
Response to Request For Information - 35 Elise
Drive, Dodges Ferry - P2.pdf
Plans Reference: P2
Date Received: 11/02/2026

MICHAEL KELLY
LICENCED BUILDING DESIGNER
308654680
0428 901 871
michael.kelly324@gmail.com

REV

COMMENT
A ISSUED FOR PLANNING APPROVAL

DATE
26/01/26

STORY RESIDENCE
EXISTING SITE PLAN

CLIENT:
ANDREW & JESSICA STORY
ADDRESS:
35 ELISE DRIVE
DODGES FERRY 7173

JOB NO: 21012
PAGE SIZE: A3
DATE: 26/01/26
SHEET: A02
SCALE: 1:250
REV: A

 Sorell Council

Development Application: 5.2026.15.1 -
Response to Request For Information - 35 Elise
Drive, Dodges Ferry - P2.pdf
Plans Reference: P2
Date Received: 11/02/2026

GENERAL SITE NOTES

SITE DETAILS SHOWN ON THIS PLAN HAVE BEEN OBTAINED BY SITE MEASUREMENTS &/OR USING EXISTING DATA INCLUDING: TITLE DETAILS, EXISTING SURVEY DATA, STATE MAPPING DATA AND SATELLITE IMAGERY.

SOIL EROSION & WATER MANAGEMENT NOTES

DNPPIPES TO BE CONNECTED TO STORMWATER
DISPOSAL AS SOON AS ROOF IS INSTALLED.

AG DRAINS WHERE SHOWN ARE TO BE INSTALLED PRIOR TO FOOTING EXCAVATION. AG DRAINS ARE TO BE 100Ø, 650 DEEP WITH FILTER SOCK U.N.O.

ALL EXCAVATED MATERIALS AND WASHDOWN AREAS TO BE PLACED UP SLOPE OF AG DRAIN OR A TEMPORARY SEDIMENT CONTROL FENCE. EXCAVATED MATERIALS TO BE REMOVED WHEN BUILDING WORKS ARE COMPLETE AND USED AS FILL ON SITE FOR ANY LOW POINTS.

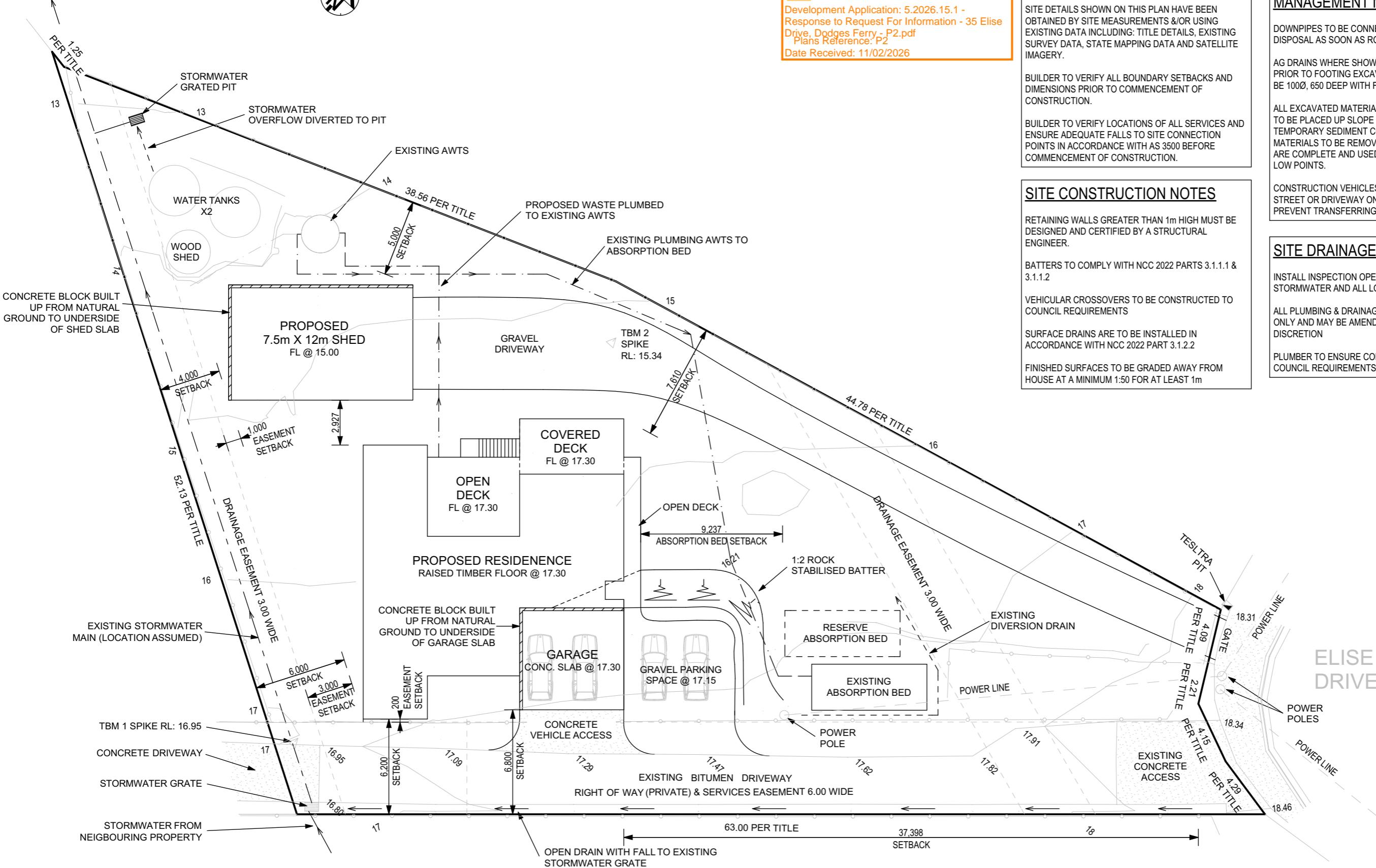
CONSTRUCTION VEHICLES TO BE PARKED ON THE STREET OR DRIVEWAY ONCE CONSTRUCTED TO PREVENT TRANSFERRING DEBRIS ONTO STREET

SITE CONSTRUCTION NOTES

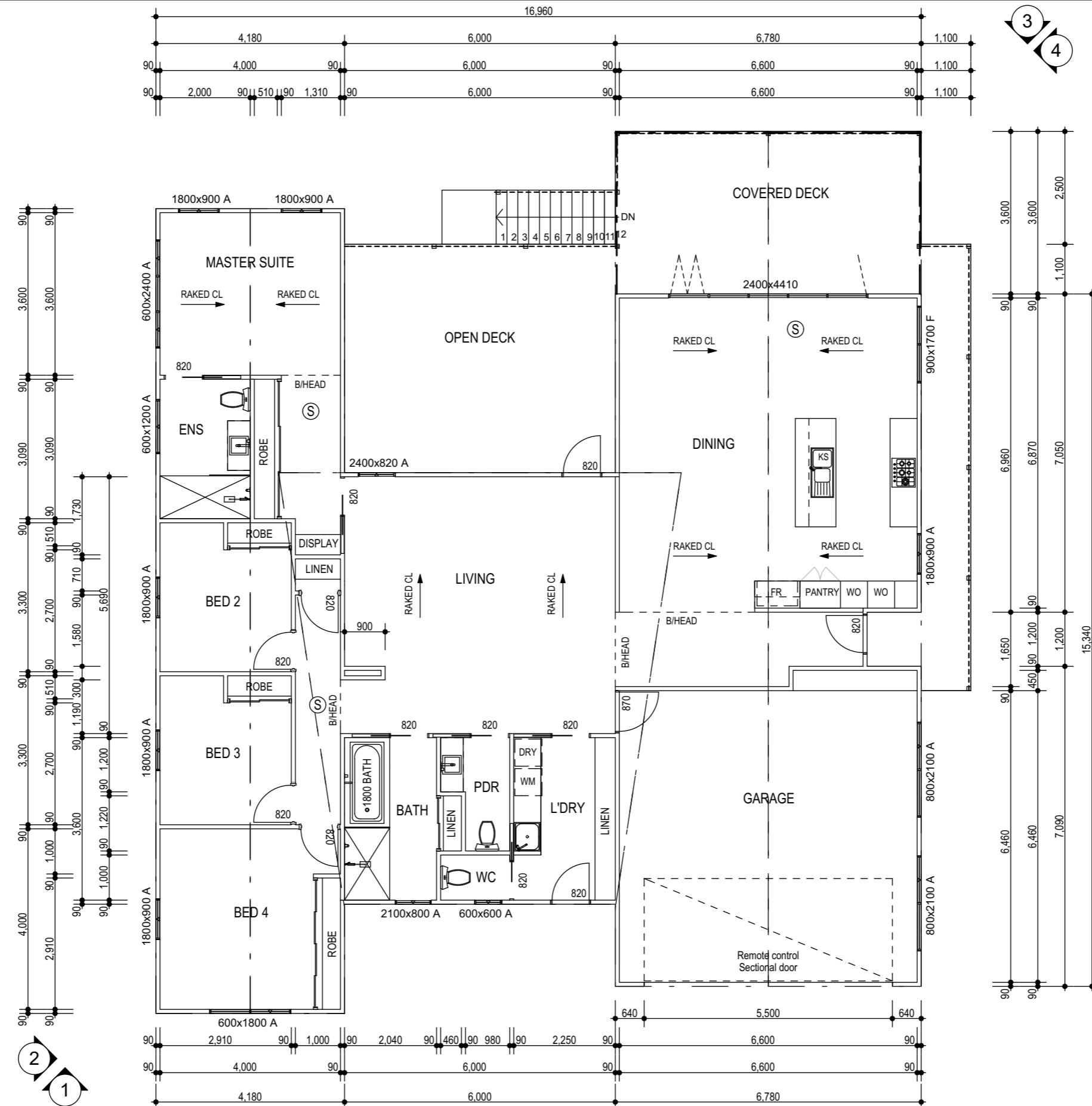
RETAINING WALLS GREATER THAN 1m HIGH MUST BE
DESIGNED AND CERTIFIED BY A STRUCTURAL
ENGINEER.

BATTERS TO COMPLY WITH NCC 2022 PARTS 3.1.1.1 & 3.1.1.2

VEHICULAR CROSSOVERS TO BE CONSTRUCTED TO


SURFACE DRAINS ARE TO BE INSTALLED IN

FINISHED SURFACES TO BE GRADED AWAY FROM


SITE DRAINAGE NOTES

INSTALL INSPECTION OPENINGS AT MAJOR BENDS FOR STORMWATER AND ALL LOW POINTS OF DOWNPipes.
ALL PLUMBING & DRAINAGE DETAILS ARE PROVISIONAL

PLUMBER TO ENSURE COMPLIANCE WITH LOCAL COUNCIL REQUIREMENTS AND AS 3500

MICHAEL KELLY LICENCED BUILDING DESIGNER 308654680 0428 901 871 michael.kelly324@gmail.com	REV	COMMENT	DATE	STORY RESIDENCE PROPOSED SITE PLAN	CLIENT: ANDREW & JESSICA STORY	JOB NO: 21012	PAGE SIZE: A3
	A	ISSUED FOR PLANNING APPROVAL	26/01/26		ADDRESS: 35 ELISE DRIVE DODGES FERRY 7173	DATE: 26/01/26	SHEET: A03
					SCALE: 1:250	REV: A	

Sorell Council

Development Application: 5.2026.15.1 -
Response to Request For Information - 35 Elise
Drive, Dodges Ferry - P2.pdf
Plans Reference: P2
Date Received: 11/02/2026

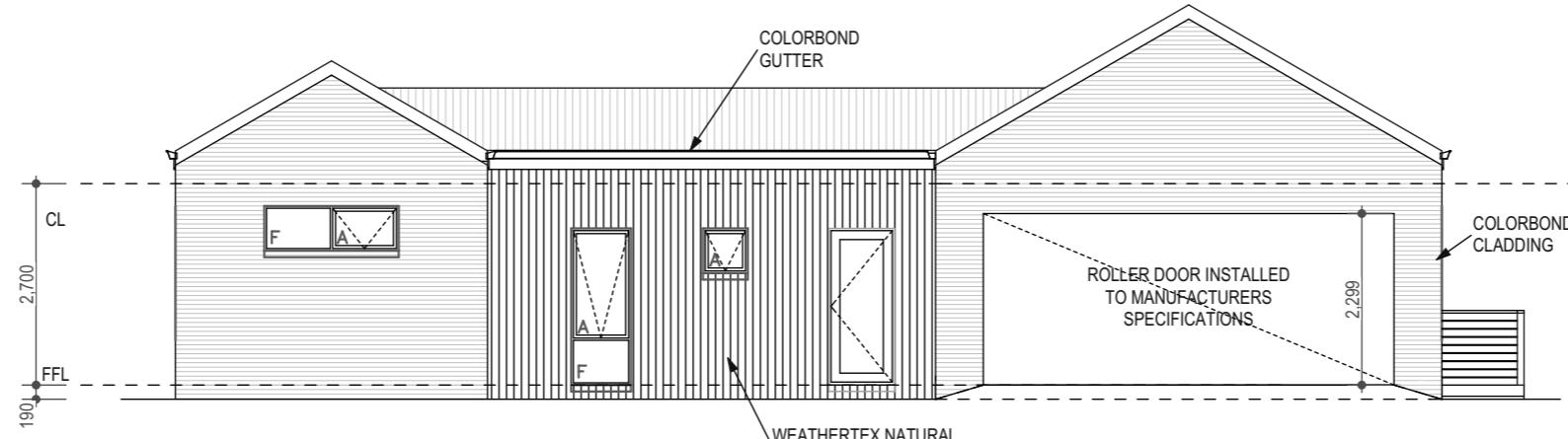
MICHAEL KELLY
LICENCED BUILDING DESIGNER
308654680

0428 901 871
michael.kelly324@gmail.com

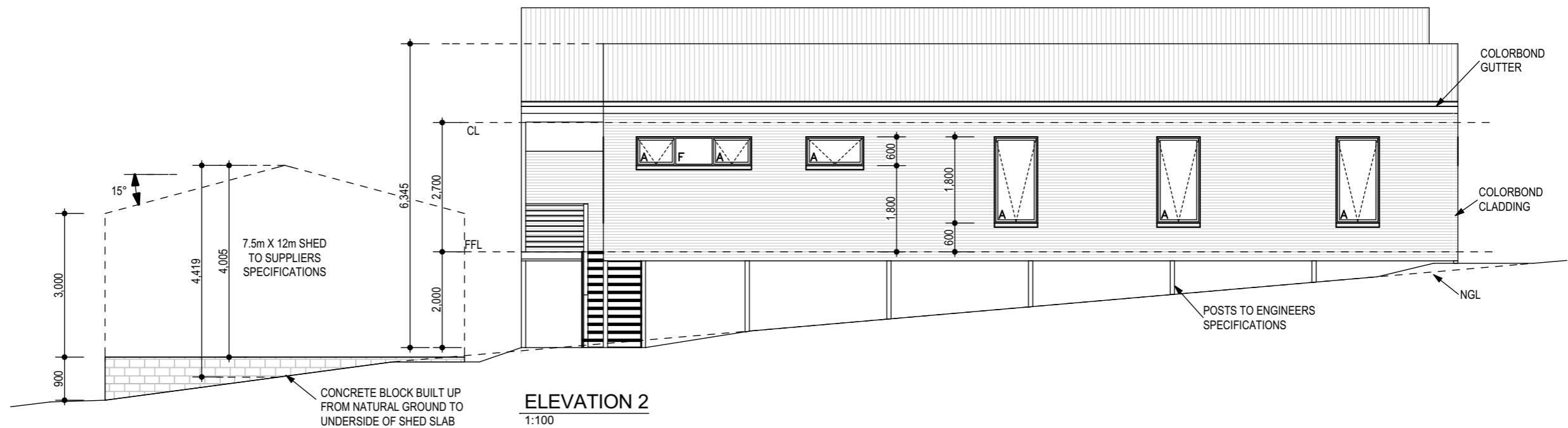
REV	COMMENT
A	ISSUED FOR PLANNING APPROVAL

STORY RESIDENCE

CLIENT:
ANDREW & JESSICA STOR


ADDRESS:
35 ELISE DRIVE
DODGES FERRY 7173

JOB NO: 21012	PAGE SIZE: A3
DATE: 26/01/26	SHEET: A04
SCALE: 1:100	REV: A



Sorell Council

Development Application: 5.2026.15.1 -
Response to Request For Information - 35 Elise
Drive, Dodges Ferry_P2.pdf
Plans Reference: P2
Date Received: 11/02/2026

ELEVATION 1
1:100

ELEVATION 2
1:100

MICHAEL KELLY
LICENCED BUILDING DESIGNER
308654680
0428 901 871
michael.kelly324@gmail.com

REV

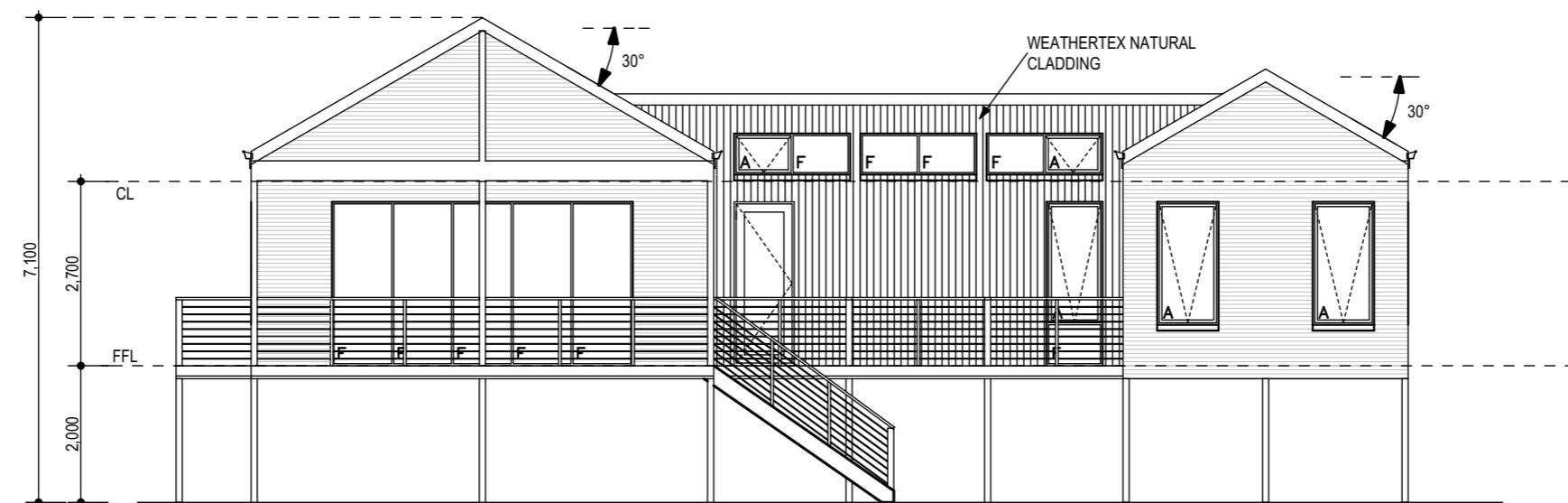
COMMENT
A ISSUED FOR PLANNING APPROVAL

DATE
26/01/26

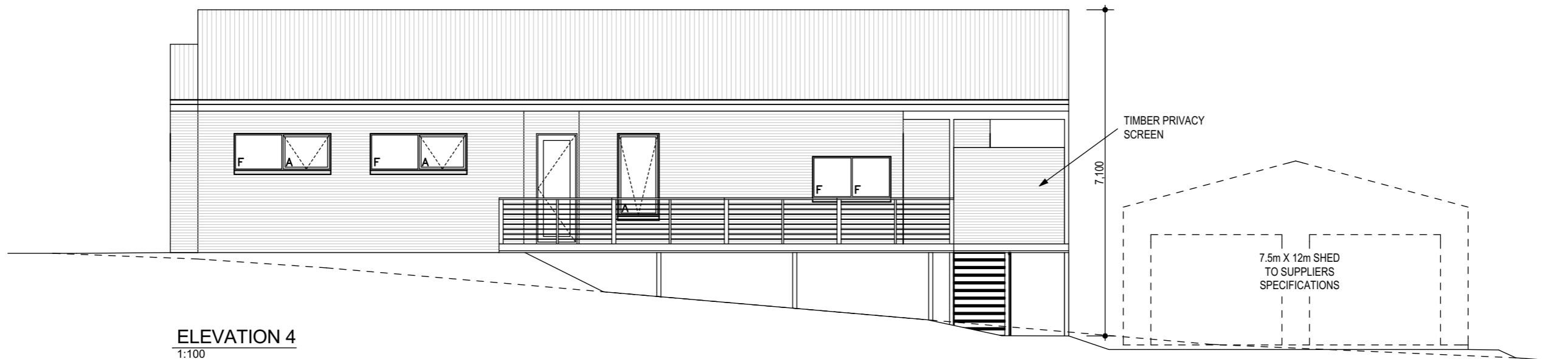
STORY RESIDENCE
ELEVATIONS

CLIENT:
ANDREW & JESSICA STORY

JOB NO: 21012
PAGE SIZE: A3


ADDRESS:
35 ELISE DRIVE
DODGES FERRY 7173

DATE: 26/01/26
SHEET: A05
SCALE: 1:100
REV: A



Sorell Council

Development Application: 5.2026.15.1 -
Response to Request For Information - 35 Elise
Drive, Dodges Ferry - P2.pdf
Plans Reference: P2
Date Received: 11/02/2026

ELEVATION 3
1:100

ELEVATION 4
1:100

MICHAEL KELLY
LICENCED BUILDING DESIGNER
308654680
0428 901 871
michael.kelly324@gmail.com

REV

COMMENT

DATE

26/01/26

STORY RESIDENCE

ELEVATIONS

CLIENT:
ANDREW & JESSICA STORY

JOB NO: 21012

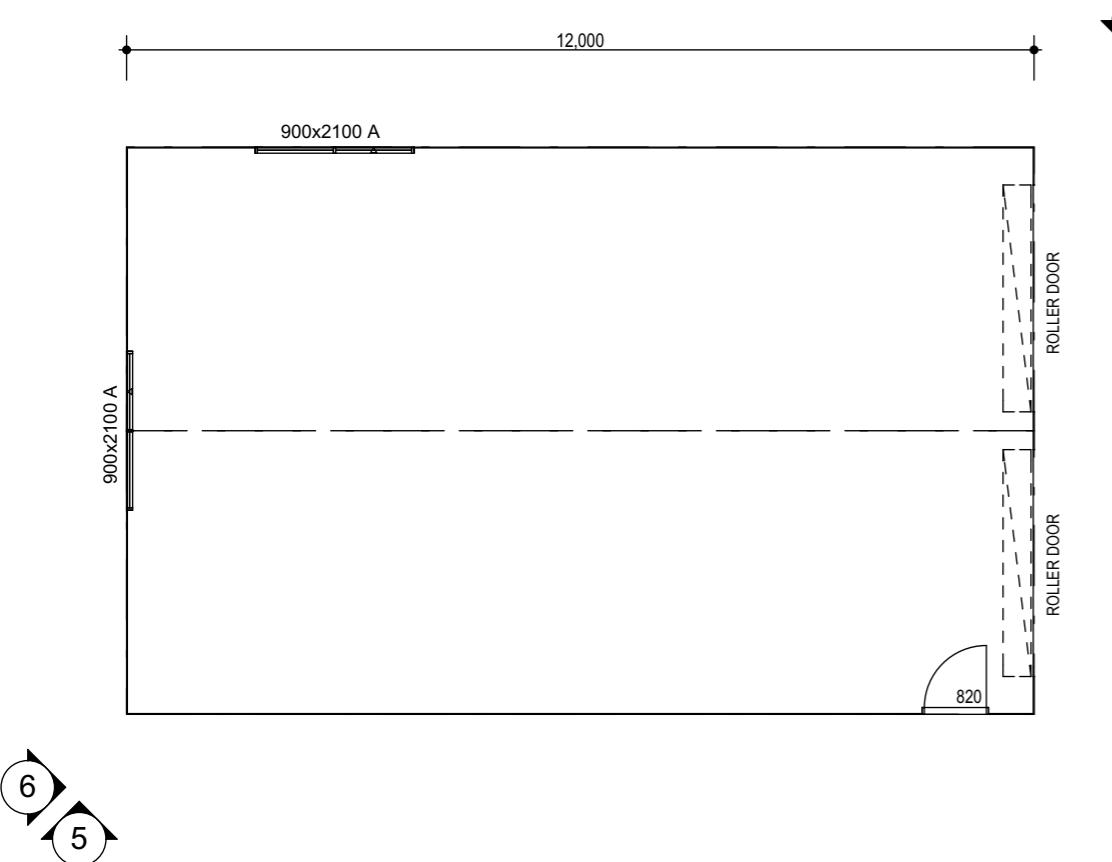
PAGE SIZE: A3

ADDRESS:
35 ELISE DRIVE
DODGES FERRY 7173

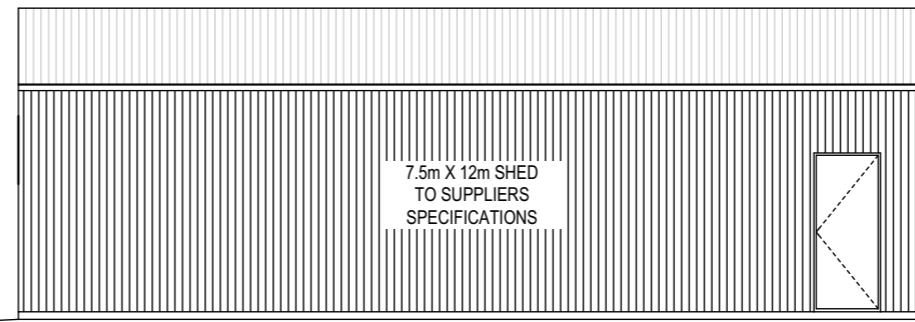
DATE: 26/01/26

SHEET: A06

SCALE: 1:100

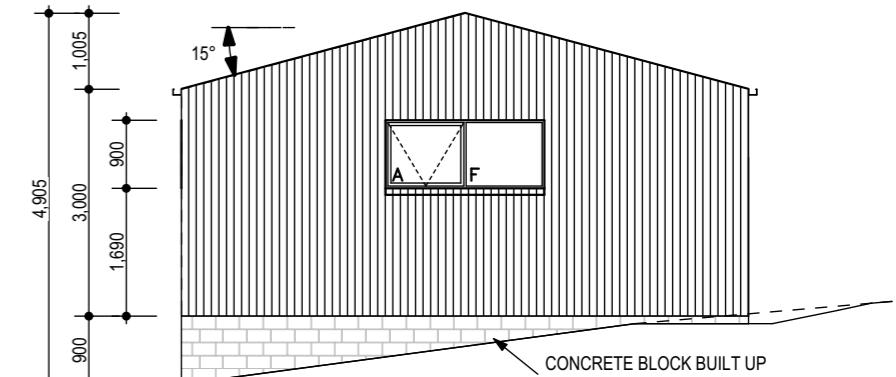

REV: A

Sorell Council


Development Application: 5.2026.15.1 -
Response to Request For Information - 35 Elise
Drive, Dodges Ferry - P2.pdf
Plans Reference: P2
Date Received: 11/02/2026

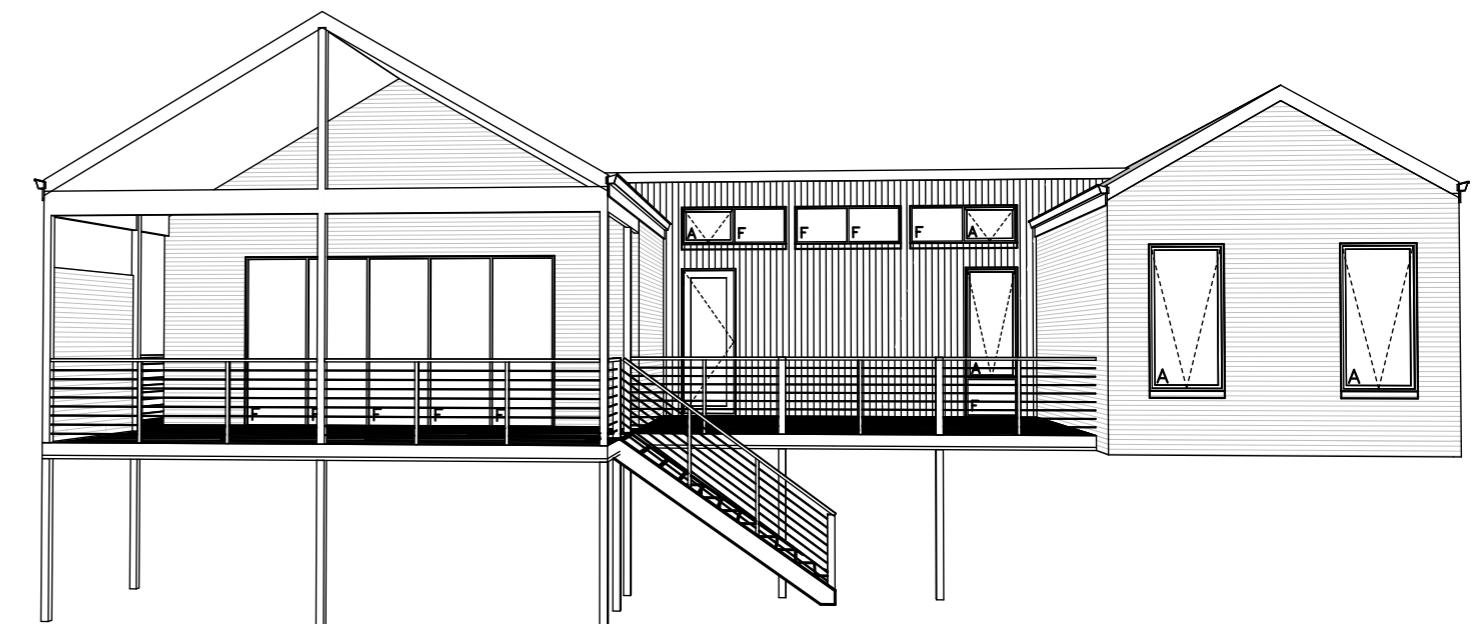
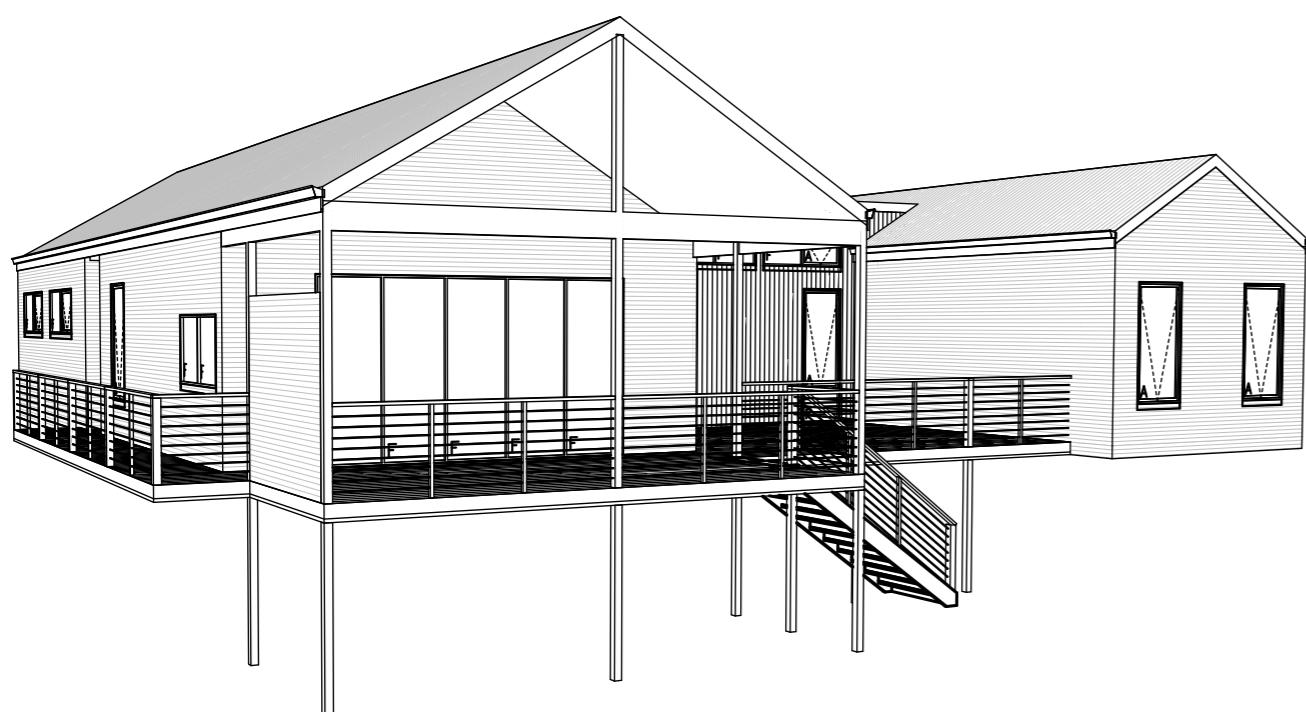
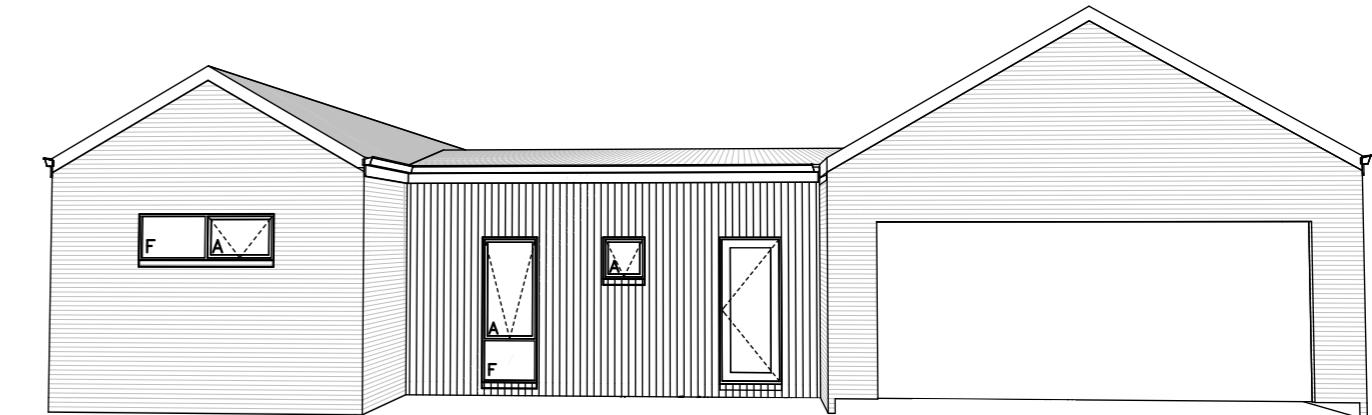
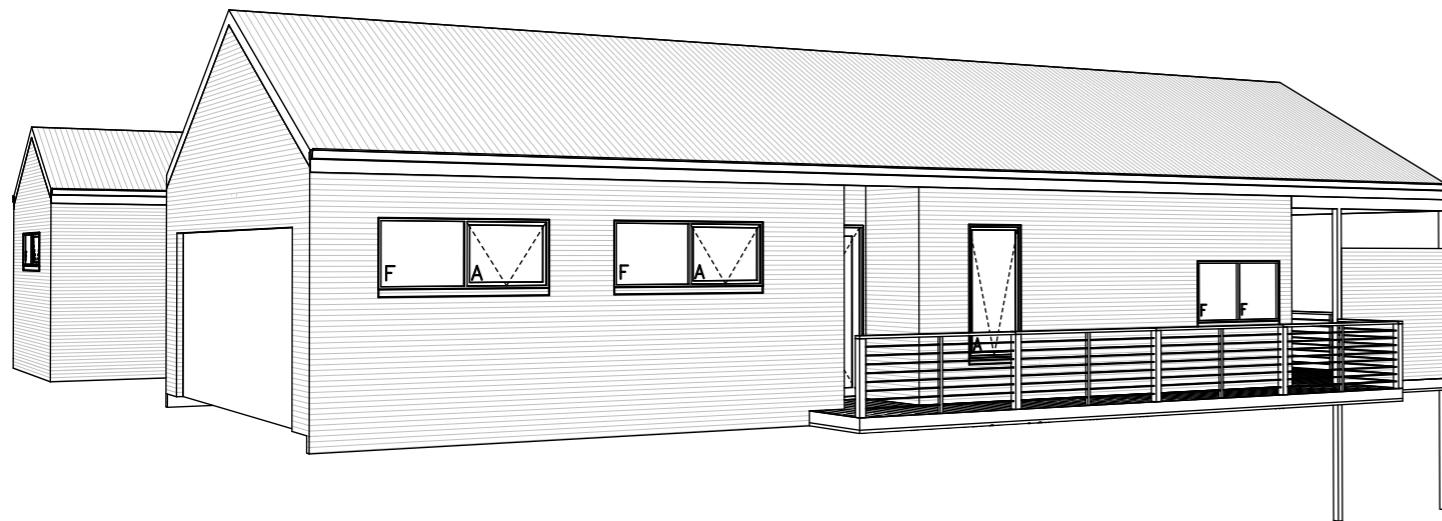
MICHAEL KELLY
LICENCED BUILDING DESIGNER
308654680

0428 901 871
michael.kelly324@gmail.com



ELEVATION 5

ELEVATION 6

CONCRETE BLOCK BUILT UP
FROM NATURAL GROUND TO
UNDERSIDE OF SHED SLAB

ELEVATION 8

1:100

MICHAEL KELLY LICENCED BUILDING DESIGNER 308654680 0428 901 871 michael.kelly324@gmail.com	REV	COMMENT	DATE	STORY RESIDENCE SHED PLAN & ELEVATIONS	CLIENT: ANDREW & JESSICA STORY	JOB NO: 21012	PAGE SIZE: A3
	A	ISSUED FOR PLANNING APPROVAL	26/01/26		ADDRESS: 35 ELISE DRIVE DODGES FERRY 7173	DATE: 26/01/26	SHEET: A07
						SCALE: 1:100	REV: A

Sorell Council

Development Application: 5.2026.15.1 -
Response to Request For Information - 35 Elise
Drive, Dodges Ferry - P2.pdf
Plans Reference: P2

Date Received: 11/02/2026

MICHAEL KELLY
LICENCED BUILDING DESIGNER
308654680
0428 901 871
michael.kelly324@gmail.com

REV

COMMENT

DATE

ISSUED FOR PLANNING APPROVAL

26/01/26

STORY RESIDENCE

3D VIEWS

CLIENT:
ANDREW & JESSICA STORY

JOB NO: 21012

PAGE SIZE: A3

ADDRESS:
35 ELISE DRIVE
DODGES FERRY 7173

DATE: 26/01/26

SHEET: A08

SCALE: N/A

REV: A